Development and Evaluation of Reverse Transcription Loop-Mediated Isothermal Amplification Assay for Rapid and Real-Time Detection of the Swine-Origin Influenza A H1N1 Virus

The recent emergence of the swine-origin influenza A H1N1 virus (S-OIV) poses a serious global health threat. Rapid detection and differentiation of S-OIV from seasonal influenza is crucial for patient management and control of the epidemics. A one-step, single-tube accelerated and quantitative S-OI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of molecular diagnostics : JMD 2011, Vol.13 (1), p.100-107
Hauptverfasser: Parida, Manmohan, Shukla, Jyoti, Sharma, Shashi, Ranghia Santhosh, Sanna, Ravi, Vasanthapuram, Mani, Reeta, Thomas, Maria, Khare, Shashi, Rai, Arvind, Kant Ratho, Radha, Pujari, Sujit, Mishra, Bijayanti, Lakshmana Rao, Putcha Venkata, Vijayaraghavan, Rajagopalan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The recent emergence of the swine-origin influenza A H1N1 virus (S-OIV) poses a serious global health threat. Rapid detection and differentiation of S-OIV from seasonal influenza is crucial for patient management and control of the epidemics. A one-step, single-tube accelerated and quantitative S-OIV-specific H1 reverse transcription loop-mediated isothermal amplification (RTLAMP) assay for clinical diagnosis of S-OIV by targeting the H1 gene is reported in this article. A comparative evaluation of the H1-specific RTLAMP assay vis-à-vis the World Health Organization-approved real-time polymerase chain reaction (RTPCR), involving 239 acute-phase throat swab samples, demonstrated exceptionally higher sensitivity by picking up all of the 116 H1N1-positive cases and 36 additional positive cases among the negatives that were sequence-confirmed as S-OIV H1N1. None of the real-time RTPCR-positive samples were missed by the RTLAMP system. The comparative analysis revealed that S-OIV RTLAMP was up to tenfold more sensitive than the World Health Organization real-time RTPCR; it had a detection limit of 0.1 tissue culture infectious dosage of50 /ml. One of the most attractive features of this isothermal gene amplification assay is that it seems to have an advantage in monitoring gene amplification by means of SYBR Green I dye-mediated naked-eye visualization within 30 minutes compared to 2 to 3 hours for a real-time reverse transcription polymerase chain reaction. This suggests that the RTLAMP assay is a valuable tool for rapid, real-time detection and quantification of S-OIV in acute-phase throat swab samples without requiring sophisticated equipment.
ISSN:1525-1578
1943-7811
DOI:10.1016/j.jmoldx.2010.11.003