Advances in the Understanding of Mammalian Copper Transporters
Copper (Cu) is an essential micronutrient. Its ability to exist in 2 oxidation states (Cu1+ and Cu2+) allows it to function as an enzymatic cofactor in hydrolytic, electron transfer, and oxygen utilization reactions. Cu transporters CTR1, ATP7A, and ATP7B play key roles in ensuring that adequate Cu...
Gespeichert in:
Veröffentlicht in: | Advances in nutrition (Bethesda, Md.) Md.), 2011-03, Vol.2 (2), p.129-137 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Copper (Cu) is an essential micronutrient. Its ability to exist in 2 oxidation states (Cu1+ and Cu2+) allows it to function as an enzymatic cofactor in hydrolytic, electron transfer, and oxygen utilization reactions. Cu transporters CTR1, ATP7A, and ATP7B play key roles in ensuring that adequate Cu is available for Cu-requiring processes and the prevention of excess Cu accumulation within cells. Two diseases of Cu metabolism, Menkes disease and Wilson disease, which are caused by mutations in ATP7A and ATP7B, respectively, exemplify the critical importance of regulating Cu balance in humans. Herein, we review recent studies of the biochemical and cell biological characteristics of CTR1, ATP7A, and ATP7B, as well as emerging roles for Cu in new areas of physiology. |
---|---|
ISSN: | 2161-8313 2156-5376 |
DOI: | 10.3945/an.110.000273 |