ASARM peptides: PHEX-dependent and -independent regulation of serum phosphate

Increased acidic serine aspartate-rich MEPE-associated motif (ASARM) peptides cause mineralization defects in X-linked hypophosphatemic rickets mice (HYP) and "directly" inhibit renal phosphate uptake in vitro. However, ASARM peptides also bind to phosphate-regulating gene with homologies...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American Journal of Physiology - Renal Physiology 2011-03, Vol.300 (3), p.F783-F791
Hauptverfasser: David, Valentin, Martin, Aline, Hedge, Anne-Marie, Drezner, Marc K, Rowe, Peter S N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Increased acidic serine aspartate-rich MEPE-associated motif (ASARM) peptides cause mineralization defects in X-linked hypophosphatemic rickets mice (HYP) and "directly" inhibit renal phosphate uptake in vitro. However, ASARM peptides also bind to phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX) and are a physiological substrate for this bone-expressed, phosphate-regulating enzyme. We therefore tested the hypothesis that circulating ASARM peptides also "indirectly" contribute to a bone-renal PHEX-dependent hypophosphatemia in normal mice. Male mice (n = 5; 12 wk) were fed for 8 wk with a normal phosphorus and vitamin D(3) diet (1% P(i) diet) or a reduced phosphorus and vitamin D(3) diet (0.1% P(i) diet). For the final 4 wk, transplantation of mini-osmotic pumps supplied a continuous infusion of either ASARM peptide (5 mg·day(-1)·kg(-1)) or vehicle. HYP, autosomal recessive hypophosphatemic rickets (ARHR), and normal mice (no pumps or ASARM infusion; 0.4% P(i) diet) were used in a separate experiment designed to measure and compare circulating ASARM peptides in disease and health. ASARM treatment decreased serum phosphate concentration and renal phosphate cotransporter (NPT2A) mRNA with the 1% P(i) diet. This was accompanied by a twofold increase in serum ASARM and 1,25-dihydroxy vitamin D(3) [1,25 (OH)(2)D(3)] levels without changes in parathyroid hormone. For both diets, ASARM-treated mice showed significant increases in serum fibroblast growth factor 23 (FGF23; +50%) and reduced serum osteocalcin (-30%) and osteopontin (-25%). Circulating ASARM peptides showed a significant inverse correlation with serum P(i) and a significant positive correlation with fractional excretion of phosphate. We conclude that constitutive overexpression of ASARM peptides plays a "component" PHEX-independent part in the HYP and ARHR hypophosphatemia. In contrast, with wild-type mice, ASARM peptides likely play a bone PHEX-dependent role in renal phosphate regulation and FGF23 expression. They may also coordinate FGF23 expression by competitively modulating PHEX/DMP1 interactions and thus bone-renal mineral regulation.
ISSN:1931-857X
0363-6127
1522-1466
DOI:10.1152/ajprenal.00304.2010