A zinc finger protein array for the visual detection of specific DNA sequences for diagnostic applications

The visual detection of specific double-stranded DNA sequences possesses great potential for the development of diagnostics. Zinc finger domains provide a powerful scaffold for creating custom DNA-binding proteins that recognize specific DNA sequences. We previously demonstrated sequence-enabled rea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2011-03, Vol.39 (5), p.e29-e29
Hauptverfasser: Kim, Moon-Soo, Stybayeva, Gulnaz, Lee, Ji Youn, Revzin, Alexander, Segal, David J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The visual detection of specific double-stranded DNA sequences possesses great potential for the development of diagnostics. Zinc finger domains provide a powerful scaffold for creating custom DNA-binding proteins that recognize specific DNA sequences. We previously demonstrated sequence-enabled reassembly of TEM-1 β-lactamase (SEER-LAC), a system consisting of two inactive fragments of β-lactamase each linked to engineered zinc finger proteins (ZFPs). Here the SEER-LAC system was applied to develop ZFP arrays that function as simple devices to identify bacterial double-stranded DNA sequences. The ZFP arrays provided a quantitative assay with a detection limit of 50 fmol of target DNA. The method could distinguish target DNA from non-target DNA within 5 min. The ZFP arrays provided sufficient sensitivity and high specificity to recognize specific DNA sequences. These results suggest that ZFP arrays have the potential to be developed into a simple and rapid point-of-care (POC) diagnostic for the multiplexed detection of pathogens.
ISSN:0305-1048
1362-4962
DOI:10.1093/nar/gkq1214