Presenilins Promote the Cellular Uptake of Copper and Zinc and Maintain Copper Chaperone of SOD1-dependent Copper/Zinc Superoxide Dismutase Activity

Dyshomeostasis of extracellular zinc and copper has been implicated in β-amyloid aggregation, the major pathology associated with Alzheimer disease. Presenilin mediates the proteolytic cleavage of the β-amyloid precursor protein to release β-amyloid, and mutations in presenilin can cause familial Al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2011-03, Vol.286 (11), p.9776-9786
Hauptverfasser: Greenough, Mark A., Volitakis, Irene, Li, Qiao-Xin, Laughton, Katrina, Evin, Genevieve, Ho, Michael, Dalziel, Andrew H., Camakaris, James, Bush, Ashley I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dyshomeostasis of extracellular zinc and copper has been implicated in β-amyloid aggregation, the major pathology associated with Alzheimer disease. Presenilin mediates the proteolytic cleavage of the β-amyloid precursor protein to release β-amyloid, and mutations in presenilin can cause familial Alzheimer disease. We tested whether presenilin expression affects copper and zinc transport. Studying murine embryonic fibroblasts (MEFs) from presenilin knock-out mice or RNA interference of presenilin expression in HEK293T cells, we observed a marked decrease in saturable uptake of radiolabeled copper and zinc. Measurement of basal metal levels in 6-month-old presenilin 1 heterozygous knock-out (PS1+/−) mice revealed significant deficiencies of copper and zinc in several tissues, including brain. Copper/zinc superoxide dismutase (SOD1) activity was significantly decreased in both presenilin knock-out MEFs and brain tissue of presenilin 1 heterozygous knock-out mice. In the MEFs and PS1+/− brains, copper chaperone of SOD1 (CCS) levels were decreased. Zinc-dependent alkaline phosphatase activity was not decreased in the PS null MEFs. These data indicate that presenilins are important for cellular copper and zinc turnover, influencing SOD1 activity, and having the potential to indirectly impact β-amyloid aggregation through metal ion clearance.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M110.163964