Blocking Dishevelled signaling in the noncanonical Wnt pathway in sea urchins disrupts endoderm formation and spiculogenesis, but not secondary mesoderm formation

Dishevelled (Dsh) is a phosphoprotein key to beta‐catenin dependent (canonical) and beta‐catenin independent (noncanonical) Wnt signaling. Whereas canonical Wnt signaling has been intensively studied in sea urchin development, little is known about other Wnt pathways. To examine roles of these beta‐...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Developmental dynamics 2009-07, Vol.238 (7), p.1649-1665
Hauptverfasser: Byrum, Christine A., Xu, Ronghui, Bince, Joanna M., McClay, David R., Wikramanayake, Athula H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dishevelled (Dsh) is a phosphoprotein key to beta‐catenin dependent (canonical) and beta‐catenin independent (noncanonical) Wnt signaling. Whereas canonical Wnt signaling has been intensively studied in sea urchin development, little is known about other Wnt pathways. To examine roles of these beta‐catenin independent pathways in embryogenesis, we used Dsh‐DEP, a deletion construct blocking planar cell polarity (PCP) and Wnt/Ca2+ signaling. Embryos overexpressing Dsh‐DEP failed to gastrulate or undergo skeletogenesis, but produced pigment cells. Although early mesodermal gene expression was largely unperturbed, embryos exhibited reduced expression of genes regulating endoderm specification and differentiation. Overexpressing activated beta‐catenin failed to rescue Dsh‐DEP embryos, indicating that Dsh‐DEP blocks endoderm formation downstream of initial canonical Wnt signaling. Because Dsh‐DEP‐like constructs block PCP signaling in other metazoans, and disrupting RhoA or Fz 5/8 in echinoids blocks subsets of the Dsh‐DEP phenotypes, our data suggest that noncanonical Wnt signaling is crucial for sea urchin endoderm formation and skeletogenesis. Developmental Dynamics 238:1649–1665, 2009. © 2009 Wiley‐Liss, Inc.
ISSN:1058-8388
1097-0177
DOI:10.1002/dvdy.21978