Generation and characterization of a large panel of murine monoclonal antibodies against vaccinia virus

Abstract Vaccinia virus (VACV), the vaccine for smallpox, induces an antibody response that is largely responsible for conferring protection. Here, we studied the antibody response to VACV by generating and characterizing B cell hybridomas from a mouse immunized with VACV. Antibodies from 66 hybrido...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Virology (New York, N.Y.) N.Y.), 2011-01, Vol.409 (2), p.271-279
Hauptverfasser: Meng, Xiangzhi, Zhong, Youmin, Embry, Addie, Yan, Bo, Lu, Shan, Zhong, Guangming, Xiang, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Vaccinia virus (VACV), the vaccine for smallpox, induces an antibody response that is largely responsible for conferring protection. Here, we studied the antibody response to VACV by generating and characterizing B cell hybridomas from a mouse immunized with VACV. Antibodies from 66 hybridomas were found to recognize 11 VACV antigens (D8, A14, WR148, D13, H3, A56, A33, C3, B5, A10 and F13), 10 of which were previously recognized as major antigens in smallpox vaccine by a microarray of VACV proteins produced with a prokaryotic expression system. VACV C3 protein, which was not detected as a target of antibody response by the proteome array, was recognized by two hybridomas, suggesting that selection of hybridomas based on immune recognition of infected cells has the advantage of detecting additional antibody response to native VACV antigens. In addition, these monoclonal antibodies are valuable reagents for studying poxvirus biology and protective mechanism of smallpox vaccine.
ISSN:0042-6822
1096-0341
DOI:10.1016/j.virol.2010.10.019