Rat eosinophils stimulate the expansion of Cryptococcus neoformans‐specific CD4+ and CD8+ T cells with a T‐helper 1 profile

Summary Experimental Cryptococcus neoformans infection in rats has been shown to have similarities with human cryptococcosis, revealing a strong granulomatous response and a low susceptibility to dissemination. Moreover, it has been shown that eosinophils are components of the inflammatory response...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Immunology 2011-02, Vol.132 (2), p.174-187
Hauptverfasser: Garro, Ana P., Chiapello, Laura S., Baronetti, José L., Masih, Diana T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary Experimental Cryptococcus neoformans infection in rats has been shown to have similarities with human cryptococcosis, revealing a strong granulomatous response and a low susceptibility to dissemination. Moreover, it has been shown that eosinophils are components of the inflammatory response to C. neoformans infections. In this in vitro study, we demonstrated that rat peritoneal eosinophils phagocytose opsonized live yeasts of C. neoformans, and that the phenomenon involves the engagement of FcγRII and CD18. Moreover, our results showed that the phagocytosis of opsonized C. neoformans triggers eosinophil activation, as indicated by (i) the up‐regulation of major histocompatibility complex (MHC) class I, MHC class II and costimulatory molecules, and (ii) an increase in interleukin (IL)‐12, tumour necrosis factor‐α (TNF‐α) and interferon‐γ (IFN‐γ) production. However, nitric oxide (NO) and hydrogen peroxide (H2O2) synthesis by eosinophils was down‐regulated after interaction with C. neoformans. Furthermore, this work demonstrated that CD4+ and CD8+ T lymphocytes isolated from spleens of infected rats and cultured with C. neoformans‐pulsed eosinophils proliferate in an MHC class II‐ and class I‐dependent manner, respectively, and produce important amounts of T‐helper 1 (Th1) type cytokines, such as TNF‐α and IFN‐γ, in the absence of T‐helper 2 (Th2) cytokine synthesis. In summary, the present study demonstrates that eosinophils act as fungal antigen‐presenting cells and suggests that C. neoformans‐loaded eosinophils might participate in the adaptive immune response.
ISSN:0019-2805
1365-2567
DOI:10.1111/j.1365-2567.2010.03351.x