Detection of the Optic Nerve Head in Fundus Images of the Retina with Gabor Filters and Phase Portrait Analysis

We propose a method using Gabor filters and phase portraits to automatically locate the optic nerve head (ONH) in fundus images of the retina. Because the center of the ONH is at or near the focal point of convergence of the retinal vessels, the method includes detection of the vessels using Gabor f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of digital imaging 2010-08, Vol.23 (4), p.438-453
Hauptverfasser: Rangayyan, Rangaraj M., Zhu, Xiaolu, Ayres, Fábio J., Ells, Anna L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a method using Gabor filters and phase portraits to automatically locate the optic nerve head (ONH) in fundus images of the retina. Because the center of the ONH is at or near the focal point of convergence of the retinal vessels, the method includes detection of the vessels using Gabor filters, detection of peaks in the node map obtained via phase portrait analysis, and an intensity-based condition. The method was tested on 40 images from the Digital Retinal Images for Vessel Extraction (DRIVE) database and 81 images from the Structured Analysis of the Retina (STARE) database. An ophthalmologist independently marked the center of the ONH for evaluation of the results. The evaluation of the results includes free-response receiver operating characteristics (FROC) and a measure of distance between the manually marked and detected centers. With the DRIVE database, the centers of the ONH were detected with an average distance of 0.36 mm (18 pixels) to the corresponding centers marked by the ophthalmologist. FROC analysis indicated a sensitivity of 100% at 2.7 false positives per image. With the STARE database, FROC analysis indicated a sensitivity of 88.9% at 4.6 false positives per image.
ISSN:0897-1889
1618-727X
DOI:10.1007/s10278-009-9261-1