Structure-Based Design and Synthesis of Potent, Ethylenediamine-Based, Mammalian Farnesyltransferase Inhibitors as Anticancer Agents
A potent class of anticancer, human farnesyltransferase (hFTase) inhibitors has been identified by “piggy-backing” on potent, antimalarial inhibitors of Plasmodium falciparum farnesyltransferase (PfFTase). On the basis of a 4-fold substituted ethylenediamine scaffold, the inhibitors are structurally...
Gespeichert in:
Veröffentlicht in: | Journal of medicinal chemistry 2010-10, Vol.53 (19), p.6867-6888 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A potent class of anticancer, human farnesyltransferase (hFTase) inhibitors has been identified by “piggy-backing” on potent, antimalarial inhibitors of Plasmodium falciparum farnesyltransferase (PfFTase). On the basis of a 4-fold substituted ethylenediamine scaffold, the inhibitors are structurally simple and readily derivatized, facilitating the extensive structure−activity relationship (SAR) study reported herein. Our most potent inhibitor is compound 1f, which exhibited an in vitro hFTase IC50 value of 25 nM and a whole cell H-Ras processing IC50 value of 90 nM. Moreover, it is noteworthy that several of our inhibitors proved highly selective for hFTase (up to 333-fold) over the related prenyltransferase enzyme geranylgeranyltransferase-I (GGTase-I). A crystal structure of inhibitor 1a co-crystallized with farnesyl pyrophosphate (FPP) in the active site of rat FTase illustrates that the para-benzonitrile moiety of 1a is stabilized by a π−π stacking interaction with the Y361β residue, suggesting a structural explanation for the observed importance of this component of our inhibitors. |
---|---|
ISSN: | 0022-2623 1520-4804 |
DOI: | 10.1021/jm1001748 |