Discovery of Halopyridines as Quiescent Affinity Labels: Inactivation of Dimethylarginine Dimethylaminohydrolase

In an effort to develop novel covalent modifiers of dimethylarginine dimethylaminohydrolase (DDAH) that are useful for biological applications, a set of “fragment”-sized inhibitors that were identified using a high-throughput screen are tested for time-dependent inhibition. One structural class of i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2011-02, Vol.133 (5), p.1553-1562
Hauptverfasser: Johnson, Corey M, Linsky, Thomas W, Yoon, Dae-Wi, Person, Maria D, Fast, Walter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In an effort to develop novel covalent modifiers of dimethylarginine dimethylaminohydrolase (DDAH) that are useful for biological applications, a set of “fragment”-sized inhibitors that were identified using a high-throughput screen are tested for time-dependent inhibition. One structural class of inactivators, 4-halopyridines, show time- and concentration-dependent inactivation of DDAH, and the inactivation mechanism of one example, 4-bromo-2-methylpyridine (1), is characterized in detail. The neutral form of halopyridines is not very reactive with excess glutathione. However, 1 readily reacts, with loss of its halide, in a selective, covalent, and irreversible manner with the active-site Cys249 of DDAH. This active-site Cys is not particularly reactive (pK a ca. 8.8), and 1 does not inactivate papain (Cys pK a ca. ≤4), suggesting that, unlike many reagents, Cys nucleophilicity is not a predominating factor in selectivity. Rather, binding and stabilization of the more reactive pyridinium form of the inactivator by a second moiety, Asp66, is required for facile reaction. This constraint imparts a unique selectivity profile to these inactivators. To our knowledge, halopyridines have not previously been reported as protein modifiers, and therefore they represent a first-in-class example of a novel type of quiescent affinity label.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja109207m