Nonadditivity in Conformational Entropy upon Molecular Rigidification Reveals a Universal Mechanism Affecting Folding Cooperativity

Previously, we employed a Maxwell counting distance constraint model (McDCM) to describe α-helix formation in polypeptides. Unlike classical helix-coil transition theories, the folding mechanism derives from nonadditivity in conformational entropy caused by rigidification of molecular structure as i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2011-02, Vol.100 (4), p.1129-1138
Hauptverfasser: Vorov, Oleg K., Livesay, Dennis R., Jacobs, Donald J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Previously, we employed a Maxwell counting distance constraint model (McDCM) to describe α-helix formation in polypeptides. Unlike classical helix-coil transition theories, the folding mechanism derives from nonadditivity in conformational entropy caused by rigidification of molecular structure as intramolecular cross-linking interactions form along the backbone. For example, when a hydrogen bond forms within a flexible region, both energy and conformational entropy decrease. However, no conformational entropy is lost when the region is already rigid because atomic motions are not constrained further. Unlike classical zipper models, the same mechanism also describes a coil-to- β-hairpin transition. Special topological features of the helix and hairpin structures allow the McDCM to be solved exactly. Taking full advantage of the fact that Maxwell constraint counting is a mean field approximation applied to the distribution of cross-linking interactions, we present an exact transfer matrix method that does not require any special topological feature. Upon application of the model to proteins, cooperativity within the folding transition is yet again appropriately described. Notwithstanding other contributing factors such as the hydrophobic effect, this simple model identifies a universal mechanism for cooperativity within polypeptide and protein-folding transitions, and it elucidates scaling laws describing hydrogen-bond patterns observed in secondary structure. In particular, the native state should have roughly twice as many constraints as there are degrees of freedom in the coil state to ensure high fidelity in two-state folding cooperativity, which is empirically observed.
ISSN:0006-3495
1542-0086
DOI:10.1016/j.bpj.2011.01.027