In vivo 6-thioguanine-resistant T cells from melanoma patients have public TCR and share TCR beta amino acid sequences with melanoma-reactive T cells
In vivo hypoxanthine–guanine phosphoribosyltransferase (HPRT)-deficient T cells (MT) from melanoma patients are enriched for T cells with in vivo clonal amplifications that traffic between blood and tumor tissues. Melanoma is thus a model cancer to test the hypothesis that in vivo MT from cancer pat...
Gespeichert in:
Veröffentlicht in: | Journal of immunological methods 2011-02, Vol.365 (1-2), p.76-86 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In vivo hypoxanthine–guanine phosphoribosyltransferase (HPRT)-deficient T cells (MT) from melanoma patients are enriched for T cells with in vivo clonal amplifications that traffic between blood and tumor tissues. Melanoma is thus a model cancer to test the hypothesis that in vivo MT from cancer patients can be used as immunological probes for immunogenic tumor antigens. MT were obtained by 6-thioguanine (TG) selection of lymphocytes from peripheral blood and tumor tissues, and wild-type T cells (WT) were obtained analogously without TG selection. cDNA sequences of the T cell receptor beta chains (TRB) were used as unambiguous biomarkers of in vivo clonality and as indicators of T cell specificity. Public TRB were identified in MT from the blood and tumor of different melanoma patients. Such public TRB were not found in normal control MT or WT. As an indicator of T cell specificity for melanoma, the >2600 MT and WT TRB, including the public TRB from melanoma patients, were compared to a literature-derived empirical database of >1270 TRB from melanoma-reactive T cells. Various degrees of similarity, ranging from 100% conservation to 3-amino acid motifs (3-mer), were found between both melanoma patient MT and WT TRBs and the empirical database. The frequency of 3-mer and 4-mer TRB matching to the empirical database was significantly higher in MT compared with WT in the tumor (p=0.0285 and p=0.006, respectively). In summary, in vivo MT from melanoma patients contain public TRB as well as T cells with specificity for characterized melanoma antigens. We conclude that in vivo MT merit study as novel probes for uncharacterized immunogenic antigens in melanoma and other malignancies. |
---|---|
ISSN: | 0022-1759 1872-7905 |
DOI: | 10.1016/j.jim.2010.12.007 |