Poly(oligo-D-arginine) With Internal Disulfide Linkages as a Cytoplasm-sensitive Carrier for siRNA Delivery

Small interfering RNA (siRNA) has emerged as a therapeutic strategy for various diseases due to its target-specific gene silencing; however, its relatively high molecular weight, negative charge, and low stability hamper in vitro and in vivo applications. Approaches to overcome those drawbacks have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular therapy 2011-02, Vol.19 (2), p.372-380
Hauptverfasser: Won, Young-Wook, Yoon, Sun-Mi, Lee, Kyung-Mi, Kim, Yong-Hee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Small interfering RNA (siRNA) has emerged as a therapeutic strategy for various diseases due to its target-specific gene silencing; however, its relatively high molecular weight, negative charge, and low stability hamper in vitro and in vivo applications. Approaches to overcome those drawbacks have relied on nonviral siRNA carriers based on cationic polymers or peptides. Nevertheless, cationic polymer-based siRNA carriers have yet to resolve intrinsic problems such as cytotoxicity and immunogenicity. An environment-sensitive carrier was recently proposed to enhance siRNA bioactivity and to reduce the carrier safety issues. Only a few studies, however, have shown cytoplasm-sensitive dissociation of the polyplex. In the present study, we clearly demonstrated decondensation of siRNA/poly(oligo-D-arginine) polyplex in the cytoplasm in response to intracellular glutathione (GSH) and the enhanced bioactivity of siRNA against VEGF (siVEGF) used as a model both in vitro and in an animal model. Reducible poly(oligo-D-arginine) (rPOA) rapidly dissociated in the cytoplasm, resulting in fast siRNA release to its target location while maintaining siRNA bioactivity both in vitro and in vivo.
ISSN:1525-0016
1525-0024
DOI:10.1038/mt.2010.242