The GluK1 (GluR5) Kainate/α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptor Antagonist LY293558 Reduces Soman-Induced Seizures and Neuropathology
The possibility of mass exposure to nerve agents by a terrorist attack necessitates the availability of antidotes that can be effective against nerve agent toxicity even when administered at a relatively long latency after exposure, because medical assistance may not be immediately available. Nerve...
Gespeichert in:
Veröffentlicht in: | The Journal of pharmacology and experimental therapeutics 2011-02, Vol.336 (2), p.303-312 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The possibility of mass exposure to nerve agents by a terrorist attack necessitates the availability of antidotes that can be effective against nerve agent toxicity even when administered at a relatively long latency after exposure, because medical assistance may not be immediately available. Nerve agents induce status epilepticus (SE), which can cause brain damage or death. Antagonists of kainate receptors that contain the GluK1 (formerly known as GluR5) subunit (GluK1Rs) are emerging as a new potential treatment for SE and epilepsy from animal research, whereas clinical trials to treat pain have shown that the GluK1/α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist LY293558 [(3
S
,4
aR
,6
R
,8
aR
)-6-[2-(1(2)
H
-tetrazole-5-yl)ethyl]decahydroisoquinoline-3-carboxylic acid] is safe and well tolerated. Therefore, we tested whether LY293558 is effective against soman-induced seizures and neuropathology, when administered 1 h after soman exposure, in rats. LY293558 stopped seizures induced by soman and reduced the total duration of SE, monitored by electroencephalographic recordings within a 24 h-period after exposure. In addition, LY293558 prevented neuronal loss in the basolateral amygdala (BLA) and the CA1 hippocampal area on both days 1 and 7 after soman exposure and reduced neuronal degeneration in the CA1, CA3, and hilar hippocampal regions, entorhinal cortex, amygdala, and neocortex on day 1 after exposure and in the CA1, CA3, amygdala, and neocortex on day 7 after exposure. It also prevented the delayed loss of glutamic acid decarboxylase-67 immuno-stained BLA interneurons on day 7 after exposure. LY293558 is a potential new emergency treatment for nerve agent exposure that can be expected to be effective against seizures and brain damage even with late administration. |
---|---|
ISSN: | 0022-3565 1521-0103 |
DOI: | 10.1124/jpet.110.171835 |