Ht31, a Protein Kinase A Anchoring Inhibitor, Induces Robust Cholesterol Efflux and Reverses Macrophage Foam Cell Formation through ATP-binding Cassette Transporter A1

Macrophage foam cell is the predominant cell type in atherosclerotic lesions. Removal of excess cholesterol from macrophages thus offers effective protection against atherosclerosis. Here we report that a protein kinase A (PKA)-anchoring inhibitor, st-Ht31, induces robust cholesterol/phospholipid ef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2011-02, Vol.286 (5), p.3370-3378
Hauptverfasser: Ma, Loretta, Dong, Fumin, Denis, Maxime, Feng, Ying, Wang, Ming-Dong, Zha, Xiaohui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Macrophage foam cell is the predominant cell type in atherosclerotic lesions. Removal of excess cholesterol from macrophages thus offers effective protection against atherosclerosis. Here we report that a protein kinase A (PKA)-anchoring inhibitor, st-Ht31, induces robust cholesterol/phospholipid efflux, and ATP-binding cassette transporter A1 (ABCA1) greatly facilitates this process. Remarkably, we found that st-Ht31 completely reverses foam cell formation, and this process is ABCA1-dependent. The reversal is also accompanied by the restoration of well modulated inflammatory response to LPS. There is no detectable toxicity associated with st-Ht31, even when cells export up to 20% cellular cholesterol per hour. Using FRET-based PKA biosensors in live cells, we provide evidence that st-Ht31 drives cholesterol efflux by elevating PKA activity specifically in the cytoplasm. Furthermore, ABCA1 facilitates st-Ht31 uptake. This allows st-Ht31 to effectively remove cholesterol from ABCA1-expressing cells. We speculate that de-anchoring of PKA offers a novel therapeutic strategy to remove excess cholesterol from lipid-laden lesion macrophages.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M110.173666