Temporal Repression of Core Circadian Genes Is Mediated through EARLY FLOWERING 3 in Arabidopsis
The circadian clock provides robust, ∼24 hr biological rhythms throughout the eukaryotes. The clock gene circuit in plants comprises interlocking transcriptional feedback loops, reviewed in [1], whereby the morning-expressed transcription factors CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) and LATE ELONGATE...
Gespeichert in:
Veröffentlicht in: | Current biology 2011-01, Vol.21 (2), p.120-125 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The circadian clock provides robust, ∼24 hr biological rhythms throughout the eukaryotes. The clock gene circuit in plants comprises interlocking transcriptional feedback loops, reviewed in [1], whereby the morning-expressed transcription factors CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) repress the expression of evening genes, notably TIMING OF CAB EXPRESSION 1 (TOC1). EARLY FLOWERING 3 (ELF3) has been implicated as a repressor of light signaling to the clock [2, 3] and, paradoxically, as an activator of the light-induced genes CCA1 and LHY [4, 5]. We use cca1-11 lhy-21 elf3-4 plants to separate the repressive function of ELF3 from its downstream targets CCA1 and LHY. We further demonstrate that ELF3 associates physically with the promoter of PSEUDO-RESPONSE REGULATOR 9 (PRR9), a repressor of CCA1 and LHY expression, in a time-dependent fashion. The repressive function of ELF3 is thus consistent with indirect activation of LHY and CCA1, in a double-negative connection via a direct ELF3 target, PRR9. This mechanism reconciles the functions of ELF3 in the clock network during the night and points to further effects of ELF3 during the day.
► ELF3 is a regulator of TOC1, PRR9, GI, and PRR7 gene expression ► Repression by ELF3 is genetically separable from repression by LHY and CCA1 ► ELF3 physically associates with the promoter of PRR9 in a time-dependent manner |
---|---|
ISSN: | 0960-9822 1879-0445 |
DOI: | 10.1016/j.cub.2010.12.013 |