Whole transcriptome analysis of the fasting and fed Burmese python heart: insights into extreme physiological cardiac adaptation

The infrequently feeding Burmese python (Python molurus) experiences significant and rapid postprandial cardiac hypertrophy followed by regression as digestion is completed. To begin to explore the molecular mechanisms of this response, we have sequenced and assembled the fasted and postfed Burmese...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiological genomics 2011-01, Vol.43 (2), p.69-76
Hauptverfasser: Wall, Christopher E, Cozza, Steven, Riquelme, Cecilia A, McCombie, W Richard, Heimiller, Joseph K, Marr, Thomas G, Leinwand, Leslie A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The infrequently feeding Burmese python (Python molurus) experiences significant and rapid postprandial cardiac hypertrophy followed by regression as digestion is completed. To begin to explore the molecular mechanisms of this response, we have sequenced and assembled the fasted and postfed Burmese python heart transcriptomes with Illumina technology using the chicken (Gallus gallus) genome as a reference. In addition, we have used RNA-seq analysis to identify differences in the expression of biological processes and signaling pathways between fasted, 1 day postfed (DPF), and 3 DPF hearts. Out of a combined transcriptome of ∼2,800 mRNAs, 464 genes were differentially expressed. Genes showing differential expression at 1 DPF compared with fasted were enriched for biological processes involved in metabolism and energetics, while genes showing differential expression at 3 DPF compared with fasted were enriched for processes involved in biogenesis, structural remodeling, and organization. Moreover, we present evidence for the activation of physiological and not pathological signaling pathways in this rapid, novel model of cardiac growth in pythons. Together, our data provide the first comprehensive gene expression profile for a reptile heart.
ISSN:1094-8341
1531-2267
DOI:10.1152/physiolgenomics.00162.2010