SPAK-Knockout Mice Manifest Gitelman Syndrome and Impaired Vasoconstriction
Polymorphisms in the gene encoding sterile 20/SPS1-related proline/alanine-rich kinase (SPAK) associate with hypertension susceptibility in humans. SPAK interacts with WNK kinases to regulate the Na(+)-K(+)-2Cl(-) and Na(+)-Cl(-) co-transporters [collectively, N(K)CC]. Mutations in WNK1/4 and N(K)CC...
Gespeichert in:
Veröffentlicht in: | Journal of the American Society of Nephrology 2010-11, Vol.21 (11), p.1868-1877 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Polymorphisms in the gene encoding sterile 20/SPS1-related proline/alanine-rich kinase (SPAK) associate with hypertension susceptibility in humans. SPAK interacts with WNK kinases to regulate the Na(+)-K(+)-2Cl(-) and Na(+)-Cl(-) co-transporters [collectively, N(K)CC]. Mutations in WNK1/4 and N(K)CC can cause changes in BP and dyskalemia in humans, but the physiologic role of SPAK in vivo is unknown. We generated and analyzed SPAK-null mice by targeting disruption of exons 9 and 10 of SPAK. Compared with SPAK(+/+) littermates, SPAK(+/-) mice exhibited hypotension without significant electrolyte abnormalities, and SPAK(-/-) mice not only exhibited hypotension but also recapitulated Gitelman syndrome with hypokalemia, hypomagnesemia, and hypocalciuria. In the kidney tissues of SPAK(-/-) mice, the expression of total and phosphorylated (p-)NCC was markedly decreased, but that of p-OSR1, total NKCC2, and p-NKCC2 was significantly increased. We observed a blunted response to thiazide but normal response to furosemide in SPAK(-/-) mice. In aortic tissues, total NKCC1 expression was increased but p-NKCC1 was decreased in SPAK-deficient mice. Both SPAK(+/-) and SPAK(-/-) mice had impaired responses to the selective α(1)-adrenergic agonist phenylephrine and the NKCC1 inhibitor bumetanide, suggesting that impaired aortic contractility may contribute to the hypotension of SPAK-null mice. In summary, SPAK-null mice have defects of NCC in the kidneys and NKCC1 in the blood vessels, leading to hypotension through renal salt wasting and vasodilation. SPAK may be a promising target for antihypertensive therapy. |
---|---|
ISSN: | 1046-6673 1533-3450 |
DOI: | 10.1681/asn.2009121295 |