Loss of TGF-beta signaling contributes to autoimmune pancreatitis

Recent observations suggest that immune response is involved in the development of pancreatitis. However, the exact pathogenesis underlying this immune-mediated response is still under debate. TGF-beta has been known to be an important regulating factor in maintaining immune homeostasis. To determin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of clinical investigation 2000-04, Vol.105 (8), p.1057-1065
Hauptverfasser: Hahm, K B, Im, Y H, Lee, C, Parks, W T, Bang, Y J, Green, J E, Kim, S J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent observations suggest that immune response is involved in the development of pancreatitis. However, the exact pathogenesis underlying this immune-mediated response is still under debate. TGF-beta has been known to be an important regulating factor in maintaining immune homeostasis. To determine the role of TGF-beta in the initiation or progression of pancreatitis, TGF-beta signaling was inactivated in mouse pancreata by overexpressing a dominant-negative mutant form of TGF-beta type II receptor in the pancreas, under control of the pS2 mouse trefoil peptide promoter. Transgenic mice showed marked increases in MHC class II molecules and matrix metalloproteinase expression in pancreatic acinar cells. These mice also showed increased susceptibility to cerulein-induced pancreatitis. This pancreatitis was characterized by severe pancreatic edema, inflammatory cell infiltration, T- and B-cell hyperactivation, IgG-type autoantibodies against pancreatic acinar cells, and IgM-type autoantibodies against pancreatic ductal epithelial cells. Therefore, TGF-beta signaling seems to be essential either in maintaining the normal immune homeostasis and suppressing autoimmunity or in preserving the integrity of pancreatic acinar cells.
ISSN:0021-9738
DOI:10.1172/JCI8337