Bassoon and the synaptic ribbon organize Ca²+ channels and vesicles to add release sites and promote refilling

At the presynaptic active zone, Ca²+ influx triggers fusion of synaptic vesicles. It is not well understood how Ca²+ channel clustering and synaptic vesicle docking are organized. Here, we studied structure and function of hair cell ribbon synapses following genetic disruption of the presynaptic sca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2010-11, Vol.68 (4), p.724-738
Hauptverfasser: Frank, Thomas, Rutherford, Mark A, Strenzke, Nicola, Neef, Andreas, Pangršič, Tina, Khimich, Darina, Fejtova, Anna, Fetjova, Anna, Gundelfinger, Eckart D, Liberman, M Charles, Harke, Benjamin, Bryan, Keith E, Lee, Amy, Egner, Alexander, Riedel, Dietmar, Moser, Tobias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 738
container_issue 4
container_start_page 724
container_title Neuron (Cambridge, Mass.)
container_volume 68
creator Frank, Thomas
Rutherford, Mark A
Strenzke, Nicola
Neef, Andreas
Pangršič, Tina
Khimich, Darina
Fejtova, Anna
Fetjova, Anna
Gundelfinger, Eckart D
Liberman, M Charles
Harke, Benjamin
Bryan, Keith E
Lee, Amy
Egner, Alexander
Riedel, Dietmar
Moser, Tobias
description At the presynaptic active zone, Ca²+ influx triggers fusion of synaptic vesicles. It is not well understood how Ca²+ channel clustering and synaptic vesicle docking are organized. Here, we studied structure and function of hair cell ribbon synapses following genetic disruption of the presynaptic scaffold protein Bassoon. Mutant synapses--mostly lacking the ribbon--showed a reduction in membrane-proximal vesicles, with ribbonless synapses affected more than ribbon-occupied synapses. Ca²+ channels were also fewer at mutant synapses and appeared in abnormally shaped clusters. Ribbon absence reduced Ca²+ channel numbers at mutant and wild-type synapses. Fast and sustained exocytosis was reduced, notwithstanding normal coupling of the remaining Ca²+ channels to exocytosis. In vitro recordings revealed a slight impairment of vesicle replenishment. Mechanistic modeling of the in vivo data independently supported morphological and functional in vitro findings. We conclude that Bassoon and the ribbon (1) create a large number of release sites by organizing Ca²+ channels and vesicles, and (2) promote vesicle replenishment.
doi_str_mv 10.1016/j.neuron.2010.10.027
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3005353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3235633991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-40d97bd17560717d83ff68261b88313a806b64947e3e7ba62961d21cc818400f3</originalsourceid><addsrcrecordid>eNpdkc9uEzEQxi0EoqHwBghZ4tAD2uCxvbb3glSi8keq1AucLa_Xmzhy7GDvViqP1Ufok-E0pYKeRvrmN59m5kPoLZAlEBAft8vo5pzikpJ7aUmofIYWQDrZcOi652hBVCcaQSU7Qa9K2RICvO3gJTqhlaJKwAKlz6aUlCI2ccDTxuFyE81-8hZn3_dVT3ltov_t8Mrc3X7AdmNidKHc89eueBtcwVPCZhhwdsGZUj385I7EPqddmlztjD4EH9ev0YvRhOLePNRT9PPLxY_Vt-by6uv31fllYzmDqeFk6GQ_gGwFkSAHxcZRKCqgV4oBM4qIXvCOS8ec7I2gnYCBgrUKFCdkZKfo09F3P_c7N1gXp2yC3me_M_lGJ-P1_53oN3qdrjUjpGUtqwZnDwY5_ZpdmfTOF-tCMNGluWgFFFjbcV7J90_IbZpzrNdpaAlTnFLRVoofKZtTKfUfj7sA0YdA9VYfA9WHQA9qDbSOvfv3jsehvwmyP4Wyn34</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503842265</pqid></control><display><type>article</type><title>Bassoon and the synaptic ribbon organize Ca²+ channels and vesicles to add release sites and promote refilling</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Frank, Thomas ; Rutherford, Mark A ; Strenzke, Nicola ; Neef, Andreas ; Pangršič, Tina ; Khimich, Darina ; Fejtova, Anna ; Fetjova, Anna ; Gundelfinger, Eckart D ; Liberman, M Charles ; Harke, Benjamin ; Bryan, Keith E ; Lee, Amy ; Egner, Alexander ; Riedel, Dietmar ; Moser, Tobias</creator><creatorcontrib>Frank, Thomas ; Rutherford, Mark A ; Strenzke, Nicola ; Neef, Andreas ; Pangršič, Tina ; Khimich, Darina ; Fejtova, Anna ; Fetjova, Anna ; Gundelfinger, Eckart D ; Liberman, M Charles ; Harke, Benjamin ; Bryan, Keith E ; Lee, Amy ; Egner, Alexander ; Riedel, Dietmar ; Moser, Tobias</creatorcontrib><description>At the presynaptic active zone, Ca²+ influx triggers fusion of synaptic vesicles. It is not well understood how Ca²+ channel clustering and synaptic vesicle docking are organized. Here, we studied structure and function of hair cell ribbon synapses following genetic disruption of the presynaptic scaffold protein Bassoon. Mutant synapses--mostly lacking the ribbon--showed a reduction in membrane-proximal vesicles, with ribbonless synapses affected more than ribbon-occupied synapses. Ca²+ channels were also fewer at mutant synapses and appeared in abnormally shaped clusters. Ribbon absence reduced Ca²+ channel numbers at mutant and wild-type synapses. Fast and sustained exocytosis was reduced, notwithstanding normal coupling of the remaining Ca²+ channels to exocytosis. In vitro recordings revealed a slight impairment of vesicle replenishment. Mechanistic modeling of the in vivo data independently supported morphological and functional in vitro findings. We conclude that Bassoon and the ribbon (1) create a large number of release sites by organizing Ca²+ channels and vesicles, and (2) promote vesicle replenishment.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2010.10.027</identifier><identifier>PMID: 21092861</identifier><language>eng</language><publisher>United States: Elsevier Limited</publisher><subject>Animals ; Calcium Channels - genetics ; Calcium Channels - physiology ; Excitatory Postsynaptic Potentials - genetics ; Excitatory Postsynaptic Potentials - physiology ; Exocytosis - genetics ; Exocytosis - physiology ; Medical research ; Mice ; Mice, 129 Strain ; Mice, Inbred C57BL ; Mice, Transgenic ; Microscopy ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - physiology ; Neuronal Plasticity - genetics ; Neuronal Plasticity - physiology ; Rodents ; Synapses - genetics ; Synapses - physiology ; Synaptic Vesicles - genetics ; Synaptic Vesicles - physiology</subject><ispartof>Neuron (Cambridge, Mass.), 2010-11, Vol.68 (4), p.724-738</ispartof><rights>Copyright © 2010 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Nov 18, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-40d97bd17560717d83ff68261b88313a806b64947e3e7ba62961d21cc818400f3</citedby><cites>FETCH-LOGICAL-c431t-40d97bd17560717d83ff68261b88313a806b64947e3e7ba62961d21cc818400f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21092861$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Frank, Thomas</creatorcontrib><creatorcontrib>Rutherford, Mark A</creatorcontrib><creatorcontrib>Strenzke, Nicola</creatorcontrib><creatorcontrib>Neef, Andreas</creatorcontrib><creatorcontrib>Pangršič, Tina</creatorcontrib><creatorcontrib>Khimich, Darina</creatorcontrib><creatorcontrib>Fejtova, Anna</creatorcontrib><creatorcontrib>Fetjova, Anna</creatorcontrib><creatorcontrib>Gundelfinger, Eckart D</creatorcontrib><creatorcontrib>Liberman, M Charles</creatorcontrib><creatorcontrib>Harke, Benjamin</creatorcontrib><creatorcontrib>Bryan, Keith E</creatorcontrib><creatorcontrib>Lee, Amy</creatorcontrib><creatorcontrib>Egner, Alexander</creatorcontrib><creatorcontrib>Riedel, Dietmar</creatorcontrib><creatorcontrib>Moser, Tobias</creatorcontrib><title>Bassoon and the synaptic ribbon organize Ca²+ channels and vesicles to add release sites and promote refilling</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>At the presynaptic active zone, Ca²+ influx triggers fusion of synaptic vesicles. It is not well understood how Ca²+ channel clustering and synaptic vesicle docking are organized. Here, we studied structure and function of hair cell ribbon synapses following genetic disruption of the presynaptic scaffold protein Bassoon. Mutant synapses--mostly lacking the ribbon--showed a reduction in membrane-proximal vesicles, with ribbonless synapses affected more than ribbon-occupied synapses. Ca²+ channels were also fewer at mutant synapses and appeared in abnormally shaped clusters. Ribbon absence reduced Ca²+ channel numbers at mutant and wild-type synapses. Fast and sustained exocytosis was reduced, notwithstanding normal coupling of the remaining Ca²+ channels to exocytosis. In vitro recordings revealed a slight impairment of vesicle replenishment. Mechanistic modeling of the in vivo data independently supported morphological and functional in vitro findings. We conclude that Bassoon and the ribbon (1) create a large number of release sites by organizing Ca²+ channels and vesicles, and (2) promote vesicle replenishment.</description><subject>Animals</subject><subject>Calcium Channels - genetics</subject><subject>Calcium Channels - physiology</subject><subject>Excitatory Postsynaptic Potentials - genetics</subject><subject>Excitatory Postsynaptic Potentials - physiology</subject><subject>Exocytosis - genetics</subject><subject>Exocytosis - physiology</subject><subject>Medical research</subject><subject>Mice</subject><subject>Mice, 129 Strain</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Microscopy</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - physiology</subject><subject>Neuronal Plasticity - genetics</subject><subject>Neuronal Plasticity - physiology</subject><subject>Rodents</subject><subject>Synapses - genetics</subject><subject>Synapses - physiology</subject><subject>Synaptic Vesicles - genetics</subject><subject>Synaptic Vesicles - physiology</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc9uEzEQxi0EoqHwBghZ4tAD2uCxvbb3glSi8keq1AucLa_Xmzhy7GDvViqP1Ufok-E0pYKeRvrmN59m5kPoLZAlEBAft8vo5pzikpJ7aUmofIYWQDrZcOi652hBVCcaQSU7Qa9K2RICvO3gJTqhlaJKwAKlz6aUlCI2ccDTxuFyE81-8hZn3_dVT3ltov_t8Mrc3X7AdmNidKHc89eueBtcwVPCZhhwdsGZUj385I7EPqddmlztjD4EH9ev0YvRhOLePNRT9PPLxY_Vt-by6uv31fllYzmDqeFk6GQ_gGwFkSAHxcZRKCqgV4oBM4qIXvCOS8ec7I2gnYCBgrUKFCdkZKfo09F3P_c7N1gXp2yC3me_M_lGJ-P1_53oN3qdrjUjpGUtqwZnDwY5_ZpdmfTOF-tCMNGluWgFFFjbcV7J90_IbZpzrNdpaAlTnFLRVoofKZtTKfUfj7sA0YdA9VYfA9WHQA9qDbSOvfv3jsehvwmyP4Wyn34</recordid><startdate>20101118</startdate><enddate>20101118</enddate><creator>Frank, Thomas</creator><creator>Rutherford, Mark A</creator><creator>Strenzke, Nicola</creator><creator>Neef, Andreas</creator><creator>Pangršič, Tina</creator><creator>Khimich, Darina</creator><creator>Fejtova, Anna</creator><creator>Fetjova, Anna</creator><creator>Gundelfinger, Eckart D</creator><creator>Liberman, M Charles</creator><creator>Harke, Benjamin</creator><creator>Bryan, Keith E</creator><creator>Lee, Amy</creator><creator>Egner, Alexander</creator><creator>Riedel, Dietmar</creator><creator>Moser, Tobias</creator><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20101118</creationdate><title>Bassoon and the synaptic ribbon organize Ca²+ channels and vesicles to add release sites and promote refilling</title><author>Frank, Thomas ; Rutherford, Mark A ; Strenzke, Nicola ; Neef, Andreas ; Pangršič, Tina ; Khimich, Darina ; Fejtova, Anna ; Fetjova, Anna ; Gundelfinger, Eckart D ; Liberman, M Charles ; Harke, Benjamin ; Bryan, Keith E ; Lee, Amy ; Egner, Alexander ; Riedel, Dietmar ; Moser, Tobias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-40d97bd17560717d83ff68261b88313a806b64947e3e7ba62961d21cc818400f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Calcium Channels - genetics</topic><topic>Calcium Channels - physiology</topic><topic>Excitatory Postsynaptic Potentials - genetics</topic><topic>Excitatory Postsynaptic Potentials - physiology</topic><topic>Exocytosis - genetics</topic><topic>Exocytosis - physiology</topic><topic>Medical research</topic><topic>Mice</topic><topic>Mice, 129 Strain</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Microscopy</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - physiology</topic><topic>Neuronal Plasticity - genetics</topic><topic>Neuronal Plasticity - physiology</topic><topic>Rodents</topic><topic>Synapses - genetics</topic><topic>Synapses - physiology</topic><topic>Synaptic Vesicles - genetics</topic><topic>Synaptic Vesicles - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frank, Thomas</creatorcontrib><creatorcontrib>Rutherford, Mark A</creatorcontrib><creatorcontrib>Strenzke, Nicola</creatorcontrib><creatorcontrib>Neef, Andreas</creatorcontrib><creatorcontrib>Pangršič, Tina</creatorcontrib><creatorcontrib>Khimich, Darina</creatorcontrib><creatorcontrib>Fejtova, Anna</creatorcontrib><creatorcontrib>Fetjova, Anna</creatorcontrib><creatorcontrib>Gundelfinger, Eckart D</creatorcontrib><creatorcontrib>Liberman, M Charles</creatorcontrib><creatorcontrib>Harke, Benjamin</creatorcontrib><creatorcontrib>Bryan, Keith E</creatorcontrib><creatorcontrib>Lee, Amy</creatorcontrib><creatorcontrib>Egner, Alexander</creatorcontrib><creatorcontrib>Riedel, Dietmar</creatorcontrib><creatorcontrib>Moser, Tobias</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frank, Thomas</au><au>Rutherford, Mark A</au><au>Strenzke, Nicola</au><au>Neef, Andreas</au><au>Pangršič, Tina</au><au>Khimich, Darina</au><au>Fejtova, Anna</au><au>Fetjova, Anna</au><au>Gundelfinger, Eckart D</au><au>Liberman, M Charles</au><au>Harke, Benjamin</au><au>Bryan, Keith E</au><au>Lee, Amy</au><au>Egner, Alexander</au><au>Riedel, Dietmar</au><au>Moser, Tobias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bassoon and the synaptic ribbon organize Ca²+ channels and vesicles to add release sites and promote refilling</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2010-11-18</date><risdate>2010</risdate><volume>68</volume><issue>4</issue><spage>724</spage><epage>738</epage><pages>724-738</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>At the presynaptic active zone, Ca²+ influx triggers fusion of synaptic vesicles. It is not well understood how Ca²+ channel clustering and synaptic vesicle docking are organized. Here, we studied structure and function of hair cell ribbon synapses following genetic disruption of the presynaptic scaffold protein Bassoon. Mutant synapses--mostly lacking the ribbon--showed a reduction in membrane-proximal vesicles, with ribbonless synapses affected more than ribbon-occupied synapses. Ca²+ channels were also fewer at mutant synapses and appeared in abnormally shaped clusters. Ribbon absence reduced Ca²+ channel numbers at mutant and wild-type synapses. Fast and sustained exocytosis was reduced, notwithstanding normal coupling of the remaining Ca²+ channels to exocytosis. In vitro recordings revealed a slight impairment of vesicle replenishment. Mechanistic modeling of the in vivo data independently supported morphological and functional in vitro findings. We conclude that Bassoon and the ribbon (1) create a large number of release sites by organizing Ca²+ channels and vesicles, and (2) promote vesicle replenishment.</abstract><cop>United States</cop><pub>Elsevier Limited</pub><pmid>21092861</pmid><doi>10.1016/j.neuron.2010.10.027</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2010-11, Vol.68 (4), p.724-738
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3005353
source MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals
subjects Animals
Calcium Channels - genetics
Calcium Channels - physiology
Excitatory Postsynaptic Potentials - genetics
Excitatory Postsynaptic Potentials - physiology
Exocytosis - genetics
Exocytosis - physiology
Medical research
Mice
Mice, 129 Strain
Mice, Inbred C57BL
Mice, Transgenic
Microscopy
Nerve Tissue Proteins - genetics
Nerve Tissue Proteins - physiology
Neuronal Plasticity - genetics
Neuronal Plasticity - physiology
Rodents
Synapses - genetics
Synapses - physiology
Synaptic Vesicles - genetics
Synaptic Vesicles - physiology
title Bassoon and the synaptic ribbon organize Ca²+ channels and vesicles to add release sites and promote refilling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T09%3A58%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bassoon%20and%20the%20synaptic%20ribbon%20organize%20Ca%C2%B2+%20channels%20and%20vesicles%20to%20add%20release%20sites%20and%20promote%20refilling&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Frank,%20Thomas&rft.date=2010-11-18&rft.volume=68&rft.issue=4&rft.spage=724&rft.epage=738&rft.pages=724-738&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2010.10.027&rft_dat=%3Cproquest_pubme%3E3235633991%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1503842265&rft_id=info:pmid/21092861&rfr_iscdi=true