Bassoon and the synaptic ribbon organize Ca²+ channels and vesicles to add release sites and promote refilling

At the presynaptic active zone, Ca²+ influx triggers fusion of synaptic vesicles. It is not well understood how Ca²+ channel clustering and synaptic vesicle docking are organized. Here, we studied structure and function of hair cell ribbon synapses following genetic disruption of the presynaptic sca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2010-11, Vol.68 (4), p.724-738
Hauptverfasser: Frank, Thomas, Rutherford, Mark A, Strenzke, Nicola, Neef, Andreas, Pangršič, Tina, Khimich, Darina, Fejtova, Anna, Fetjova, Anna, Gundelfinger, Eckart D, Liberman, M Charles, Harke, Benjamin, Bryan, Keith E, Lee, Amy, Egner, Alexander, Riedel, Dietmar, Moser, Tobias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:At the presynaptic active zone, Ca²+ influx triggers fusion of synaptic vesicles. It is not well understood how Ca²+ channel clustering and synaptic vesicle docking are organized. Here, we studied structure and function of hair cell ribbon synapses following genetic disruption of the presynaptic scaffold protein Bassoon. Mutant synapses--mostly lacking the ribbon--showed a reduction in membrane-proximal vesicles, with ribbonless synapses affected more than ribbon-occupied synapses. Ca²+ channels were also fewer at mutant synapses and appeared in abnormally shaped clusters. Ribbon absence reduced Ca²+ channel numbers at mutant and wild-type synapses. Fast and sustained exocytosis was reduced, notwithstanding normal coupling of the remaining Ca²+ channels to exocytosis. In vitro recordings revealed a slight impairment of vesicle replenishment. Mechanistic modeling of the in vivo data independently supported morphological and functional in vitro findings. We conclude that Bassoon and the ribbon (1) create a large number of release sites by organizing Ca²+ channels and vesicles, and (2) promote vesicle replenishment.
ISSN:0896-6273
1097-4199
DOI:10.1016/j.neuron.2010.10.027