Small Molecule Mimetics of an HIV-1 gp41 Fusion Intermediate as Vaccine Leads

We describe here a novel platform technology for the discovery of small molecule mimetics of conformational epitopes on protein antigens. As a model system, we selected mimetics of a conserved hydrophobic pocket within the N-heptad repeat region of the HIV-1 envelope protein, gp41. The human monoclo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2010-12, Vol.285 (52), p.40604-40611
Hauptverfasser: Caulfield, Michael J., Dudkin, Vadim Y., Ottinger, Elizabeth A., Getty, Krista L., Zuck, Paul D., Kaufhold, Robin M., Hepler, Robert W., McGaughey, Georgia B., Citron, Michael, Hrin, Renee C., Wang, Ying-Jie, Miller, Michael D., Joyce, Joseph G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe here a novel platform technology for the discovery of small molecule mimetics of conformational epitopes on protein antigens. As a model system, we selected mimetics of a conserved hydrophobic pocket within the N-heptad repeat region of the HIV-1 envelope protein, gp41. The human monoclonal antibody, D5, binds to this target and exhibits broadly neutralizing activity against HIV-1. We exploited the antigen-binding property of D5 to select complementary small molecules using a high throughput screen of a diverse chemical collection. The resulting small molecule leads were rendered immunogenic by linking them to a carrier protein and were shown to elicit N-heptad repeat-binding antibodies in a fraction of immunized mice. Plasma from HIV-1-infected subjects shown previously to contain broadly neutralizing antibodies was found to contain antibodies capable of binding to haptens represented in the benzylpiperidine leads identified as a result of the high throughput screen, further validating these molecules as vaccine leads. Our results suggest a new paradigm for vaccine discovery using a medicinal chemistry approach to identify lead molecules that, when optimized, could become vaccine candidates for infectious diseases that have been refractory to conventional vaccine development.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M110.172197