Power to Detect Spatial Disturbances under Different Levels of Geographic Aggregation

Spatio and/or temporal surveillance systems are designed to monitor the ongoing appearance of disease cases in space and time, and to detect potential disturbances in either dimension. Patient addresses are sometimes reported at some level of geographic aggregation, for example by ZIP code or census...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Medical Informatics Association : JAMIA 2009-11, Vol.16 (6), p.847-854
Hauptverfasser: Jeffery, Caroline, Ozonoff, Al, White, Laura F., Nuño, Miriam, Pagano, Marcello
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spatio and/or temporal surveillance systems are designed to monitor the ongoing appearance of disease cases in space and time, and to detect potential disturbances in either dimension. Patient addresses are sometimes reported at some level of geographic aggregation, for example by ZIP code or census tract. While this aggregation has the advantage of protecting patient privacy, it also risks compromising statistical efficiency. This paper investigated the variation in power to detect a change in the spatial distribution in the presence of spatial aggregation. The authors generated 400,000 spatial datasets with varying location and spread of simulated spatial disturbances, both on a purely synthetic uniform population, and on a heterogeneous population, representing hospital admissions to three community hospitals in Cape Cod, Massachusetts. The authors evaluated the power of the M-statistic to detect spatial disturbances, comparing the use of exact spatial locations versus twelve different levels of aggregation, where the M-statistic is a comparison of two distributions of interpoint distances between locations. When the spread of simulated spatial disturbances was contained to a small portion of the study region or affects a large proportion of the population at risk, power was highest when exact locations were reported. If the spatial disturbance was a more modest signal, the best power was attained at an aggregated level. The precision at which patients' locations are reported has the potential to affect the power of detection significantly.
ISSN:1067-5027
1527-974X
DOI:10.1197/jamia.M2788