Yellow Light Emission of Vibrio fischeri Strain Y-1: Purification and Characterization of the Energy-Accepting Yellow Fluorescent Protein
A strain of luminous bacteria, Vibrio fischeri Y-1, emits yellow light rather than the blue-green emission typical of other luminous bacteria. The yellow emission has been postulated previously to result from energy transfer from an electronically excited species formed in the bacterial luciferase-c...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1987-12, Vol.84 (24), p.8912-8916 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A strain of luminous bacteria, Vibrio fischeri Y-1, emits yellow light rather than the blue-green emission typical of other luminous bacteria. The yellow emission has been postulated previously to result from energy transfer from an electronically excited species formed in the bacterial luciferase-catalyzed reaction to a secondary emitter protein, termed the yellow fluorescent protein (YFP). We report here the purification of YFP to homogeneity without loss of the chromophore. The protein was found to be a homodimer of Mr 22,000 subunits with one weakly bound FMN per subunit. The FMN-protein complex was stabilized by 10% (vol/vol) glycerol in the buffers, allowing purification of the active holo-YFP. The protein migrated as a single spot with an isoelectric point of ≈ 6.5 on two-dimensional polyacrylamide gel electrophoresis and gave an N-terminal sequence of Met-Phe-Lys-Gly-Ile-Val-Glu-Gly-Ile-Gly-Ile-Ile-Glu-Lys-Ile. Addition of purified YFP to a reaction in which luciferase was supplied with FMNH2 (reduced FMN) by a NADH:FMN oxidoreductase resulted in a dramatic enhancement in the intensity of bioluminescence and an additional peak in the emission spectrum at about 534 nm. The resulting bimodal bioluminescence emission spectrum had peaks at 484 nm, apparently due to emission from the luciferase-flavin complex, and at 534 nm, corresponding to the fluorescence emission maximum of YFP. This bimodal spectrum closely matched the emission spectrum in vivo. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.84.24.8912 |