Human SAP18 mediates assembly of a splicing regulatory multiprotein complex via its ubiquitin-like fold
RNPS1, Acinus, and SAP18 form the apoptosis- and splicing-associated protein (ASAP) complex, which is also part of the exon junction complex. Whereas RNPS1 was originally identified as a general activator of mRNA processing, all three proteins have been found within functional spliceosomes. Both RNP...
Gespeichert in:
Veröffentlicht in: | RNA (Cambridge) 2010-12, Vol.16 (12), p.2442-2454 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | RNPS1, Acinus, and SAP18 form the apoptosis- and splicing-associated protein (ASAP) complex, which is also part of the exon junction complex. Whereas RNPS1 was originally identified as a general activator of mRNA processing, all three proteins have been found within functional spliceosomes. Both RNPS1 and Acinus contain typical motifs of splicing regulatory proteins including arginine/serine-rich domains. Due to the absence of such structural features, however, a function of SAP18 in splicing regulation is completely unknown. Here we have investigated splicing regulatory activities of the ASAP components. Whereas a full-length Acinus isoform displayed only limited splicing regulatory activity, both RNPS1 and, surprisingly, SAP18 strongly modulated splicing regulation. Detailed mutational analysis and three-dimensional modeling data revealed that the ubiquitin-like fold of SAP18 was required for efficient splicing regulatory activity. Coimmunoprecipitation and immunofluorescence experiments demonstrated that SAP18 assembles a nuclear speckle-localized splicing regulatory multiprotein complex including RNPS1 and Acinus via its ubiquitin-like fold. Our results therefore suggest a novel function of SAP18 in splicing regulation. |
---|---|
ISSN: | 1355-8382 1469-9001 |
DOI: | 10.1261/rna.2304410 |