Rosiglitazone Attenuates Age- and Diet-associated Nonalcoholic Steatohepatitis in male LDL receptor knockout mice

Nonalcoholic fatty liver disease (NAFLD) is a common complication of obesity that can progress to nonalcoholic steatohepatitis (NASH), a serious liver pathology that can advance to cirrhosis. The mechanisms responsible for NAFLD progression to NASH remain unclear. Lack of a suitable animal model tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hepatology (Baltimore, Md.) Md.), 2010-10, Vol.52 (6), p.2001-2011
Hauptverfasser: Gupte, Anisha A., Liu, Joey Z., Ren, Yuelan, Minze, Laurie J., Wiles, Jessica R., Collins, Alan R., Lyon, Christopher J., Pratico, Domenico, Finegold, Milton J., Wong, Stephen T., Webb, Paul, Baxter, John D., Moore, David D., Hsueh, Willa A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nonalcoholic fatty liver disease (NAFLD) is a common complication of obesity that can progress to nonalcoholic steatohepatitis (NASH), a serious liver pathology that can advance to cirrhosis. The mechanisms responsible for NAFLD progression to NASH remain unclear. Lack of a suitable animal model that faithfully recapitulates the pathophysiology of human NASH is a major obstacle in delineating mechanisms responsible for progression of NAFLD to NASH and, thus, development of better treatment strategies. We identified and characterized a novel mouse model, middle-aged male LDLR −/− mice fed high-fat diet (HFD), which developed NASH associated with 4 of 5 metabolic syndrome (MS) components. In MS mice, as observed in humans, liver steatosis and oxidative stress promoted NASH development. Aging exacerbated the HFD-induced NASH such that liver steatosis, inflammation, fibrosis, oxidative stress and liver injury markers were greatly enhanced in middle-aged versus young LDLR −/− mice. While expression of genes mediating fatty acid oxidation and antioxidant responses were upregulated in young LDLR −/− mice fed HFD, they were drastically reduced in MS mice. However, similar to recent human trials, NASH was partially attenuated by an insulin-sensitizing peroxisome proliferator-activated receptor-gamma (PPARγ) ligand, rosiglitazone. In addition to expected improvements in MS, newly identified mechanisms of PPARγ ligand effects included stimulation of antioxidant gene expression and mitochondrial β-oxidation, and suppression of inflammation and fibrosis. LDLR-deficiency promoted NASH, since middle-aged C57BL/6 mice fed HFD did not develop severe inflammation and fibrosis, despite increased steatosis.
ISSN:0270-9139
1527-3350
DOI:10.1002/hep.23941