Norcoclaurine Synthase Is a Member of the Pathogenesis-Related 10/Bet v1 Protein Family

Norcoclaurine synthase (NCS) catalyzes the first committed step in the biosynthesis of benzylisoquinoline alkaloids (BIAs). NCS from Thalictrum flavum (Tf NCS), Papaver somniferum (Ps NCS1 and Ps NCS2), and Coptis japonica (Cj PR10A) share substantial identity with pathogen-related 10 (PR10) and Bet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant cell 2010-10, Vol.22 (10), p.3489-3503
Hauptverfasser: Lee, Eun-Jeong, Facchini, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Norcoclaurine synthase (NCS) catalyzes the first committed step in the biosynthesis of benzylisoquinoline alkaloids (BIAs). NCS from Thalictrum flavum (Tf NCS), Papaver somniferum (Ps NCS1 and Ps NCS2), and Coptis japonica (Cj PR10A) share substantial identity with pathogen-related 10 (PR10) and Bet v1 proteins, whose functions are not well understood. A distinct enzyme (Cj NCS1) with similarity to 2-oxoglutarate-dependent dioxygenases was suggested as the bona fide NCS in C. japonica. Here, we validate the exclusive role of PR10/Bet v1-type NCS enzymes in BIA metabolism. Immunolocalization of Ps NCS2 revealed its cell type-specific occurrence in phloem sieve elements, which contain all other known BIA biosynthetic enzymes. In opium poppy, NCS transcripts and proteins were abundant in root and stem, but at low levels in leaf and carpel. Silencing of NCS in opium poppy profoundly reduced alkaloid levels compared with controls. Immunoprecipitation of NCS from total protein extracts of T. flavum cells resulted in a nearly complete attenuation of NCS activity. A Ps NCS2-green fluorescent protein fusion introduced by microprojectile bombardment into opium poppy cells initially localized to the endoplasmic reticulum but subsequently sorted to the vacuole. In our hands, Cj NCS1 did not catalyze the formation of (S)-norcoclaurine from dopamine and 4-hydroxyphenylacetaldehyde.
ISSN:1040-4651
1532-298X
DOI:10.1105/tpc.110.077958