Ventral tegmental area disruption selectively affects CA1/CA2 but not CA3 place fields during a differential reward working memory task
Hippocampus (HPC) receives dopaminergic (DA) projections from the ventral tegmental area (VTA) and substantia nigra. These inputs appear to provide a modulatory signal that influences HPC dependent behaviors and place fields. We examined how efferent projections from VTA to HPC influence spatial wor...
Gespeichert in:
Veröffentlicht in: | Hippocampus 2011-02, Vol.21 (2), p.172-184 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hippocampus (HPC) receives dopaminergic (DA) projections from the ventral tegmental area (VTA) and substantia nigra. These inputs appear to provide a modulatory signal that influences HPC dependent behaviors and place fields. We examined how efferent projections from VTA to HPC influence spatial working memory and place fields when the reward context changes. CA1 and CA3 process environmental context changes differently and VTA preferentially innervates CA1. Given these anatomical data and electrophysiological evidence that implicate DA in reward processing, we predicted that CA1 place fields would respond more strongly to both VTA disruption and changes in the reward context than CA3 place fields. Rats (N = 9) were implanted with infusion cannula targeting VTA and recording tetrodes aimed at HPC. Then they were tested on a differential reward, win‐shift working memory task. One recording session consisted of 5 baseline and 5 manipulation trials during which place cells in CA1/CA2 (N = 167) and CA3 (N = 94) were recorded. Prior to manipulation trials rats were infused with either baclofen or saline and then subjected to control or reward conditions during which the learned locations of large and small reward quantities were reversed. VTA disruption resulted in an increase in errors, and in CA1/CA2 place field reorganization. There were no changes in any measures of CA3 place field stability during VTA disruption. Reward manipulations did not affect performance or place field stability in CA1/CA2 or CA3; however, changes in the reward locations “rescued” performance and place field stability in CA1/CA2 when VTA activity was compromised, perhaps by trigging compensatory mechanisms. These data support the hypothesis that VTA contributes to spatial working memory performance perhaps by maintaining place field stability selectively in CA1/CA2. © 2010 Wiley‐Liss, Inc. |
---|---|
ISSN: | 1050-9631 1098-1063 |
DOI: | 10.1002/hipo.20734 |