Comparative Evaluation of Flow for Pharmaceutical Powders and Granules
The objective of the present work was to carry out a systematic evaluation of flow of pharmaceutical powders and granules using compendial and non-compendial methods. Angle of repose, bulk density, tapped density, Carr’s compressibility index, and Hausner ratios were evaluated. Additionally, flow wa...
Gespeichert in:
Veröffentlicht in: | AAPS PharmSciTech 2008-03, Vol.9 (1), p.250-258 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The objective of the present work was to carry out a systematic evaluation of flow of pharmaceutical powders and granules using compendial and non-compendial methods. Angle of repose, bulk density, tapped density, Carr’s compressibility index, and Hausner ratios were evaluated. Additionally, flow was characterized using a powder rheometer in which a sensitive force transducer monitors the forces generated as a result of the sample displacement. The critical attributes such as cohesivity index, caking strength, and flow stability were determined for samples. The samples consisted of different grades of magnesium stearate powder including bovine, vegetable, and food grade, physical mixture powder blend consisting of a model formulation, granules prepared by various methods including slugging, high shear granulator, and fluid bed dryer. Lubricant efficiency was also determined for granules lubricated with various concentrations of magnesium stearate. It was observed that the compendial methods were often non-discriminating for minor variations in powder flow. The additional characterization such as cohesivity, and caking strength were helpful in understanding the flow characteristics of pharmaceutical systems. The flow stability test determined that the powders were not affected by the test conditions on the rheometer. The non-compendial tests were discriminating to even minor variations in powder flow. |
---|---|
ISSN: | 1530-9932 1530-9932 |
DOI: | 10.1208/s12249-008-9046-8 |