Raf kinase inhibitor protein suppresses nuclear factor-κB-dependent cancer cell invasion at the level of matrix metalloproteinase expression but not cell migration
Accumulating evidence suggests that Raf kinase inhibitor protein (RKIP), which negatively regulates multiple signaling cascades including the Raf and nuclear factor κB (NF-κB) pathways, functions as a metastasis suppressor. However, the basis for this activity is not clear. We investigated this ques...
Gespeichert in:
Veröffentlicht in: | Cancer letters 2010-09, Vol.299 (2), p.137-149 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Accumulating evidence suggests that Raf kinase inhibitor protein (RKIP), which negatively regulates multiple signaling cascades including the Raf and nuclear factor κB (NF-κB) pathways, functions as a metastasis suppressor. However, the basis for this activity is not clear. We investigated this question in a panel of breast cancer, colon cancer and melanoma cell lines. We found that RKIP negatively regulated the invasion of the different cancer cells through three-dimensional extracellular matrix barriers by controlling the expression of matrix metalloproteinases (MMPs), particularly, MMP-1 and MMP-2. Silencing of RKIP expression resulted in a highly invasive phenotype and dramatically increased levels of MMP-1 and MMP-2 expression, while overexpression of RKIP decreased cancer cell invasion
in vitro
and metastasis
in vivo
of murine tumor allografts. Knockdown of MMP-1 or MMP-2 in RKIP-knockdown cells reverted their invasiveness to normal. In contrast, when examining migration of the different cancer cells in a two-dimensional, barrier-less environment, we found that RKIP had either a positive regulatory activity or no activity, but in no case a negative one (as would be expected if RKIP suppressed metastasis at the level of cell migration itself). Therefore, RKIP’s function as a metastasis suppressor appears to arise from its ability to negatively regulate expression of specific MMPs, and thus invasion through barriers, and not from a direct effect on the raw capacity of cells to move. The NF-κB pathway, but not the Raf pathway, appeared to positively control the invasion of breast cancer cells. A regulatory loop involving an opposing relationship between RKIP and the NF-κB pathway may control the level of MMP expression and cell invasion. |
---|---|
ISSN: | 0304-3835 1872-7980 |
DOI: | 10.1016/j.canlet.2010.08.012 |