Neutralization of Interleukin-16 Protects Nonobese Diabetic Mice From Autoimmune Type 1 Diabetes by a CCL4-Dependent Mechanism

The progressive infiltration of pancreatic islets by lymphocytes is mandatory for development of autoimmune type 1 diabetes. This inflammatory process is mediated by several mediators that are potential therapeutic targets to arrest development of type 1 diabetes. In this study, we investigate the r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes (New York, N.Y.) N.Y.), 2010-11, Vol.59 (11), p.2862-2871
Hauptverfasser: MEAGHER, Craig, BEILKE, Josh, ARREAZA, Guillermo, MI, Qing-Sheng, WEI CHEN, SALOJIN, Konstantin, HORST, Noah, CRUIKSHANK, William W, DELOVITCH, Terry L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The progressive infiltration of pancreatic islets by lymphocytes is mandatory for development of autoimmune type 1 diabetes. This inflammatory process is mediated by several mediators that are potential therapeutic targets to arrest development of type 1 diabetes. In this study, we investigate the role of one of these mediators, interleukin-16 (IL-16), in the pathogenesis of type 1 diabetes in NOD mice. At different stages of progression of type 1 diabetes, we characterized IL-16 in islets using GEArray technology and immunoblot analysis and also quantitated IL-16 activity in cell migration assays. IL-16 expression was localized in islets by immunofluorescence and confocal imaging. In vivo neutralization studies were performed to assess the role of IL-16 in the pathogenesis of type 1 diabetes. The increased expression of IL-16 in islets correlated with the development of invasive insulitis. IL-16 immunoreactivity was found in islet infiltrating T-cells, B-cells, NK-cells, and dendritic cells, and within an insulitic lesion, IL-16 was derived from infiltrating cells. CD4(+) and CD8(+) T-cells as well as B220(+) B-cells were identified as sources of secreted IL-16. Blockade of IL-16 in vivo protected against type 1 diabetes by interfering with recruitment of CD4(+) T-cells to the pancreas, and this protection required the activity of the chemokine CCL4. IL-16 production by leukocytes in islets augments the severity of insulitis during the onset of type 1 diabetes. IL-16 and CCL4 appear to function as counterregulatory proteins during disease development. Neutralization of IL-16 may represent a novel therapy for the prevention of type 1 diabetes.
ISSN:0012-1797
1939-327X
DOI:10.2337/db09-0131