Low density lipoprotein is protected from oxidation and the progression of atherosclerosis is slowed in cholesterol-fed rabbits by the antioxidant N,N'-diphenyl-phenylenediamine
The oxidative modification of low density lipoprotein (LDL) may play an important role in atherosclerosis. We found that the antioxidant N,N'-diphenyl-1,4-phenylenediamine (DPPD) inhibits in vitro LDL oxidation at concentrations much lower than other reported antioxidants. To test whether DPPD...
Gespeichert in:
Veröffentlicht in: | The Journal of clinical investigation 1992-06, Vol.89 (6), p.1885-1891 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The oxidative modification of low density lipoprotein (LDL) may play an important role in atherosclerosis. We found that the antioxidant N,N'-diphenyl-1,4-phenylenediamine (DPPD) inhibits in vitro LDL oxidation at concentrations much lower than other reported antioxidants. To test whether DPPD could prevent atherosclerosis, New Zealand White rabbits were fed either a diet containing 0.5% cholesterol and 10% corn oil (control group) or the same diet also containing 1% DPPD (DPPD-fed group) for 10 wk. Plasma total cholesterol levels were not different between the two groups, but DPPD feeding increased the levels of triglyceride (73%, P = 0.007) and HDL cholesterol (26%, P = 0.045). Lipoproteins from DPPD-fed rabbits contained DPPD and were much more resistant to oxidation than control lipoproteins. After 10 wk, the DPPD-fed animals had less severe atherosclerosis than did the control animals: thoracic aorta lesion area was decreased by 71% (P = 0.0007), and aortic cholesterol content was decreased by 51% (P = 0.007). Although DPPD cannot be given to humans because it is a mutagen, our results indicate that orally active antioxidants can have antiatherosclerotic activity. This strongly supports the theory that oxidized LDL plays an important role in the pathogenesis of atherosclerosis. |
---|---|
ISSN: | 0021-9738 1558-8238 |
DOI: | 10.1172/JCI115793 |