Low density lipoprotein is protected from oxidation and the progression of atherosclerosis is slowed in cholesterol-fed rabbits by the antioxidant N,N'-diphenyl-phenylenediamine

The oxidative modification of low density lipoprotein (LDL) may play an important role in atherosclerosis. We found that the antioxidant N,N'-diphenyl-1,4-phenylenediamine (DPPD) inhibits in vitro LDL oxidation at concentrations much lower than other reported antioxidants. To test whether DPPD...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of clinical investigation 1992-06, Vol.89 (6), p.1885-1891
Hauptverfasser: SPARROW, C. P, DOEBBER, T. W, OISZEWSKI, J, WU, M. S, VENTRE, J, STEVENS, K. A, CHAO, Y.-S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The oxidative modification of low density lipoprotein (LDL) may play an important role in atherosclerosis. We found that the antioxidant N,N'-diphenyl-1,4-phenylenediamine (DPPD) inhibits in vitro LDL oxidation at concentrations much lower than other reported antioxidants. To test whether DPPD could prevent atherosclerosis, New Zealand White rabbits were fed either a diet containing 0.5% cholesterol and 10% corn oil (control group) or the same diet also containing 1% DPPD (DPPD-fed group) for 10 wk. Plasma total cholesterol levels were not different between the two groups, but DPPD feeding increased the levels of triglyceride (73%, P = 0.007) and HDL cholesterol (26%, P = 0.045). Lipoproteins from DPPD-fed rabbits contained DPPD and were much more resistant to oxidation than control lipoproteins. After 10 wk, the DPPD-fed animals had less severe atherosclerosis than did the control animals: thoracic aorta lesion area was decreased by 71% (P = 0.0007), and aortic cholesterol content was decreased by 51% (P = 0.007). Although DPPD cannot be given to humans because it is a mutagen, our results indicate that orally active antioxidants can have antiatherosclerotic activity. This strongly supports the theory that oxidized LDL plays an important role in the pathogenesis of atherosclerosis.
ISSN:0021-9738
1558-8238
DOI:10.1172/JCI115793