Unprecedented Fe(IV) Species in a Diheme Protein MauG: A Quantum Chemical Investigation on the Unusual Mössbauer Spectroscopic Properties
Ferryl species are important catalytic intermediates in heme enzymes. A recent experimental investigation of a diheme protein MauG reported the first case of using two Fe(IV) species as an alternative to compound I in catalysis. Both Fe(IV) species have unusual Mössbauer properties, which was found...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2010-10, Vol.1 (19), p.2936-2939 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ferryl species are important catalytic intermediates in heme enzymes. A recent experimental investigation of a diheme protein MauG reported the first case of using two Fe(IV) species as an alternative to compound I in catalysis. Both Fe(IV) species have unusual Mössbauer properties, which was found to originate from novel structural features based on a quantum chemical investigation. With comparison to the previously reported Fe(IV)=O and Fe(IV)-OH species, results here provide the first evidence of a couple of new mechanisms by which proteins influence the properties of ferryl species by directly providing the O via Tyr, or stabilizing exogenous O via hydrogen bonding interaction. These results expand our ability to identify and evaluate high-valent heme proteins and models. |
---|---|
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/jz101159x |