Deletion at chromosome arm 9p in relation to BRAF/NRAS mutations and prognostic significance for primary melanoma

We report an investigation of gene dosage at 9p21.3 and mutations in BRAF and NRAS, as predictors of relapse and histological markers of poor melanoma prognosis. Formalin‐fixed primary melanomas from 74 relapsed and 42 nonrelapsed patients were sequenced for common BRAF and NRAS mutations (N = 71 re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes chromosomes & cancer 2010-05, Vol.49 (5), p.425-438
Hauptverfasser: Conway, Caroline, Beswick, Samantha, Elliott, Faye, Chang, Yu-Mei, Randerson-Moor, Juliette, Harland, Mark, Affleck, Paul, Marsden, Jerry, Sanders, D. Scott, Boon, Andy, Knowles, Margaret A., Bishop, D. Timothy, Newton-Bishop, Julia A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report an investigation of gene dosage at 9p21.3 and mutations in BRAF and NRAS, as predictors of relapse and histological markers of poor melanoma prognosis. Formalin‐fixed primary melanomas from 74 relapsed and 42 nonrelapsed patients were sequenced for common BRAF and NRAS mutations (N = 71 results) and gene dosage at 9p21.3 including the genes CDKN2A (which encodes CDKN2A and P14ARF), CDKN2B (CDKN2B), and MTAP was measured using multiplexed ligation‐dependant probe amplification (MLPA), (N = 75 results). BRAF/NRAS mutations were detected in 77% of relapsers and 58% of nonrelapsers (Fisher's exact P = 0.17), and did not predict ulceration or mitotic rate. There was no relationship between BRAF/NRAS mutations and gene dosage at 9p21.3. Reduced gene dosage at MTAP showed a borderline association with BRAF mutation (P = 0.04) and reduced gene dosage at the interferon gene cluster was borderline associated with wild type NRAS (P = 0.05). Reduced gene dosage in the CDKN2A regions coding for CDKN2A was associated with an increased risk of relapse (P = 0.03). Reduced gene dosage across 9p21.3 was associated with increased tumor thickness, mitotic rate, and ulceration (P = 0.02, 0.02, and 0.002, respectively), specifically in coding regions impacting on CDKN2B and P14ARF and CDKN2A. Loss at MTAP (P = 0.05) and the interferon gene cluster (P = 0.03) on 9p21 was also associated with tumor ulceration. There was no association between reduced gene dosage at 9p21.3 and subtype or site of tumor. This study presents supportive evidence that CDKN2B, P14ARF, and CDKN2A may all play a tumor suppressor role in melanoma progression. © 2010 Wiley‐Liss, Inc.
ISSN:1045-2257
1098-2264
DOI:10.1002/gcc.20753