Searching for Genes for Cleft Lip and/or Palate Based on Breakpoint Analysis of a Balanced Translocation t(9;17)(q32;q12)
Objective: Identification of the breakpoints of disease-associated chromosome rearrangements can provide informative clues to a positional cloning approach for genes responsible for inherited diseases. Recently, we found a three-generation Japanese family segregating balanced chromosome translocatio...
Gespeichert in:
Veröffentlicht in: | The Cleft palate-craniofacial journal 2009-09, Vol.46 (5), p.532-540 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Objective:
Identification of the breakpoints of disease-associated chromosome rearrangements can provide informative clues to a positional cloning approach for genes responsible for inherited diseases. Recently, we found a three-generation Japanese family segregating balanced chromosome translocation t(9;17)(q32;q12). One of the subjects had cleft lip and palate. We examined whether regions near the breakpoint could be associated with cleft lip and/or palate.
Methods:
We determined the breakpoints involved in the translocation by fluorescence in situ hybridization analysis and subsequent long-range polymerase chain reaction. In order to study the role of these disrupted regions in nonsyndromic cleft lip and/or palate, we performed mutation analysis and a haplotype-based transmission disequilibrium test using tagging single-nucleotide polymorphisms in the flanking regions of the breakpoints in white and Filipino nonsyndromic cleft lip and/or palate populations.
Results:
Sequence analysis demonstrated that two genes, SLC31A1 (solute carrier family 31 member 1) on chromosome 9 and CCL2 (chemokine ligand 2) on chromosome 17, were rearranged with the breaks occurring within their introns. It is interesting that SLC31A1 lies closed to BSPRY (B-box and SPRY domain), which is a candidate for involvement with cleft lip and/or palate. Some of the variants in BSPRY and CCL2 showed significant p values in the cleft lip and/or palate population compared with the control population. There was also statistically significant evidence of transmission distortion for haplotypes on both chromosomes 9 and 17.
Conclusions:
The data support previous reports that genes on chromosomal regions of 9q and 17q play an important role in facial development. |
---|---|
ISSN: | 1055-6656 1545-1569 |
DOI: | 10.1597/08-047.1 |