Evidence of the Differential Biotransformation and Genotoxicity of ZnO and CeO2 Nanoparticles on Soybean (Glycine max) Plants
Concern and interest related to the effects of nanomaterials on living organisms are growing in both the scientific and public communities. Reports have described the toxicity of nanoparticles (NPs) on micro- and macro-organisms, including some plant species. Nevertheless, to the authors’ knowledge...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2010-10, Vol.44 (19), p.7315-7320 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Concern and interest related to the effects of nanomaterials on living organisms are growing in both the scientific and public communities. Reports have described the toxicity of nanoparticles (NPs) on micro- and macro-organisms, including some plant species. Nevertheless, to the authors’ knowledge there are no reports on the biotransformation of NPs by edible terrestrial plants. Here, shown for the first time, is evidence pertaining to the biotransformation of ZnO and CeO2 NPs in plant seedlings. Although the NPs did not affect soybean germination, they produced a differential effect on plant growth and element uptake. By using synchrotron X-ray absorption spectroscopy we obtained clear evidence of the presence of CeO2 NPs in roots, whereas ZnO NPs were not present. Random amplified polymorphic DNA assay was applied to detect DNA damage and mutations caused by NPs. Results obtained from the exposure of soybean plants to CeO2 NPs show the appearance of four new bands at 2000 mg L−1 and three new bands at 4000 mg L−1 treatment. In this study we demonstrated genotoxic effects from the exposure of soybean plants to CeO2 NPs. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/es903891g |