Convergent evolution of chicken Z and human X chromosomes by expansion and gene acquisition

Dynamic sex chromosomes Birds and mammals have distinct sex chromosomes. In birds, males have a pair of Z chromosomes and females a Z and a W. In mammals, males are XY and females XX. It has long been assumed that sex-chromosome evolution has involved dramatic modification of the sex-specific (W and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2010-07, Vol.466 (7306), p.612-616
Hauptverfasser: Bellott, Daniel W., Skaletsky, Helen, Pyntikova, Tatyana, Mardis, Elaine R., Graves, Tina, Kremitzki, Colin, Brown, Laura G., Rozen, Steve, Warren, Wesley C., Wilson, Richard K., Page, David C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dynamic sex chromosomes Birds and mammals have distinct sex chromosomes. In birds, males have a pair of Z chromosomes and females a Z and a W. In mammals, males are XY and females XX. It has long been assumed that sex-chromosome evolution has involved dramatic modification of the sex-specific (W and Y) chromosomes but only modest changes to the Z and X chromosomes shared by the sexes. Not so, according to a new study reporting the sequence of the chicken Z chromosome and comparing it with the finished sequence of human X. The Z and X chromosomes have changed dramatically from the autosomal (non-sex) chromosomes that gave rise to them. And they seem to have followed convergent evolutionary trajectories, including the acquisition and amplification of testis-expressed gene families, despite having arisen independently from different portions of the ancestral genome. Birds and mammals have distinct sex chromosomes: in birds, males are ZZ and females ZW; in mammals, males are XY and females XX. By sequencing the chicken Z chromosome and comparing it with the human X chromosome, these authors overturn the currently held view that these chromosomes have diverged little from their autosomal progenitors. The Z and X chromosomes seem to have followed convergent evolutionary trajectories, despite evolving with opposite systems of heterogamety. In birds, as in mammals, one pair of chromosomes differs between the sexes. In birds, males are ZZ and females ZW. In mammals, males are XY and females XX. Like the mammalian XY pair, the avian ZW pair is believed to have evolved from autosomes, with most change occurring in the chromosomes found in only one sex—the W and Y chromosomes 1 , 2 , 3 , 4 , 5 . By contrast, the sex chromosomes found in both sexes—the Z and X chromosomes—are assumed to have diverged little from their autosomal progenitors 2 . Here we report findings that challenge this assumption for both the chicken Z chromosome and the human X chromosome. The chicken Z chromosome, which we sequenced essentially to completion, is less gene-dense than chicken autosomes but contains a massive tandem array containing hundreds of duplicated genes expressed in testes. A comprehensive comparison of the chicken Z chromosome with the finished sequence of the human X chromosome demonstrates that each evolved independently from different portions of the ancestral genome. Despite this independence, the chicken Z and human X chromosomes share features that distinguish them from
ISSN:0028-0836
1476-4687
DOI:10.1038/nature09172