Conformational Dynamics in the Selectivity Filter of KcsA in Response to Potassium Ion Concentration

Conformational change in the selectivity filter of KcsA as a function of ambient potassium concentration is studied with solid-state NMR. This highly conserved region of the protein is known to chelate potassium ions selectively. We report solid-state NMR chemical shift fingerprints of two distinct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 2010-08, Vol.401 (2), p.155-166
Hauptverfasser: Bhate, Manasi P., Wylie, Benjamin J., Tian, Lin, McDermott, Ann E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Conformational change in the selectivity filter of KcsA as a function of ambient potassium concentration is studied with solid-state NMR. This highly conserved region of the protein is known to chelate potassium ions selectively. We report solid-state NMR chemical shift fingerprints of two distinct conformations of the selectivity filter; significant changes are observed in the chemical shifts of key residues in the filter as the potassium ion concentration is changed from 50 mM to 1 μM. Potassium ion titration studies reveal that the site-specific Kd for K+ binding at the key pore residue Val76 is on the order of ∼7 μM and that a relatively high sample hydration is necessary to observe the low-K+ conformer. Simultaneous detection of both conformers at low ambient potassium concentration suggests that the high-K+ and low-K+ states are in slow exchange on the NMR timescale (kex
ISSN:0022-2836
1089-8638
DOI:10.1016/j.jmb.2010.06.031