Cooperation Between Translating Ribosomes and RNA Polymerase in Transcription Elongation

During transcription of protein-coding genes, bacterial RNA polymerase (RNAP) is closely followed by a ribosome that translates the newly synthesized transcript. Our in vivo measurements show that the overall elongation rate of transcription is tightly controlled by the rate of translation. Accelera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2010-04, Vol.328 (5977), p.504-508
Hauptverfasser: Proshkin, Sergey, Rahmouni, A. Rachid, Mironov, Alexander, Nudler, Evgeny
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:During transcription of protein-coding genes, bacterial RNA polymerase (RNAP) is closely followed by a ribosome that translates the newly synthesized transcript. Our in vivo measurements show that the overall elongation rate of transcription is tightly controlled by the rate of translation. Acceleration and deceleration of a ribosome result in corresponding changes in the speed of RNAP. Moreover, we found an inverse correlation between the number of rare codons in a gene, which delay ribosome progression, and the rate of transcription. The stimulating effect of a ribosome on RNAP is achieved by preventing its spontaneous backtracking, which enhances the pace and also facilitates readthrough of roadblocks in vivo. Such a cooperative mechanism ensures that the transcriptional yield is always adjusted to translational needs at different genes and under various growth conditions.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.1184939