Increased lymphocyte micronucleus frequency in early pregnancy is associated prospectively with pre-eclampsia and/or intrauterine growth restriction

Genome stability is essential for normal foetal growth and development. To date, genome stability in human lymphocytes has not been studied in relation to late pregnancy diseases, such as pre-eclampsia (PE) and intrauterine growth restriction (IUGR), which can be life-threatening to mother and baby...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mutagenesis 2010-09, Vol.25 (5), p.489-498
Hauptverfasser: Furness, D. L. F., Dekker, G. A., Hague, W. M, Khong, T. Y., Fenech, M. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Genome stability is essential for normal foetal growth and development. To date, genome stability in human lymphocytes has not been studied in relation to late pregnancy diseases, such as pre-eclampsia (PE) and intrauterine growth restriction (IUGR), which can be life-threatening to mother and baby and together affect >10% of pregnancies. We performed a prospective cohort study investigating the association of maternal chromosomal damage in mid-pregnancy (20 weeks gestation) with pregnancy outcomes. Chromosome damage was measured using the cytokinesis-block micronucleus cytome (CBMNcyt) assay in peripheral blood lymphocytes. The odds ratio for PE and/or IUGR in a mixed cohort of low- and high-risk pregnancies (N = 136) and a cohort of only high-risk pregnancies (N = 91) was 15.97 (P = 0.001) and 17.85 (P = 0.007), respectively, if the frequency of lymphocytes with micronuclei (MN) at 20 weeks gestation was greater than the mean + 2 SDs of the cohort. These results suggest that the presence of lymphocyte MN is significantly increased in women who develop PE and/or IUGR before the clinical signs or symptoms appear relative to women with normal pregnancy outcomes. The CBMNcyt assay may provide a new approach for the early detection of women at risk of developing these late pregnancy diseases and for biomonitoring the efficacy of interventions to reduce DNA damage, which may in turn ameliorate pregnancy outcome.
ISSN:0267-8357
1464-3804
DOI:10.1093/mutage/geq032