Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate

Stem cells sense and respond to the mechanical properties of the extracellular matrix. However, both the extent to which extracellular-matrix mechanics affect stem-cell fate in three-dimensional microenvironments and the underlying biophysical mechanisms are unclear. We demonstrate that the commitme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2010-06, Vol.9 (6), p.518-526
Hauptverfasser: Huebsch, Nathaniel, Arany, Praveen R., Mao, Angelo S., Shvartsman, Dmitry, Ali, Omar A., Bencherif, Sidi A., Rivera-Feliciano, José, Mooney, David J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stem cells sense and respond to the mechanical properties of the extracellular matrix. However, both the extent to which extracellular-matrix mechanics affect stem-cell fate in three-dimensional microenvironments and the underlying biophysical mechanisms are unclear. We demonstrate that the commitment of mesenchymal stem-cell populations changes in response to the rigidity of three-dimensional microenvironments, with osteogenesis occurring predominantly at 11–30 kPa. In contrast to previous two-dimensional work, however, cell fate was not correlated with morphology. Instead, matrix stiffness regulated integrin binding as well as reorganization of adhesion ligands on the nanoscale, both of which were traction dependent and correlated with osteogenic commitment of mesenchymal stem-cell populations. These findings suggest that cells interpret changes in the physical properties of adhesion substrates as changes in adhesion-ligand presentation, and that cells themselves can be harnessed as tools to mechanically process materials into structures that feed back to manipulate their fate. The fact that cells sense and respond to the mechanical properties of their environment is now a well-explored concept, although the mechanism of this response is still unknown. Now it is shown that cells themselves can mechanically manipulate the materials surrounding them by pulling at connective points, providing a feedback loop to influence cell fate.
ISSN:1476-1122
1476-4660
DOI:10.1038/nmat2732