Validation of crystallographic models containing TLS or other descriptions of anisotropy

The use of TLS (translation/libration/screw) models to describe anisotropic displacement of atoms within a protein crystal structure has become increasingly common. These models may be used purely as an improved methodology for crystallographic refinement or as the basis for analyzing inter‐domain a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta crystallographica. Section D, Biological crystallography. Biological crystallography., 2010-08, Vol.66 (8), p.889-900
Hauptverfasser: Zucker, Frank, Champ, P. Christoph, Merritt, Ethan A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The use of TLS (translation/libration/screw) models to describe anisotropic displacement of atoms within a protein crystal structure has become increasingly common. These models may be used purely as an improved methodology for crystallographic refinement or as the basis for analyzing inter‐domain and other large‐scale motions implied by the crystal structure. In either case it is desirable to validate that the crystallographic model, including the TLS description of anisotropy, conforms to our best understanding of protein structures and their modes of flexibility. A set of validation tests has been implemented that can be integrated into ongoing crystallographic refinement or run afterwards to evaluate a previously refined structure. In either case validation can serve to increase confidence that the model is correct, to highlight aspects of the model that may be improved or to strengthen the evidence supporting specific modes of flexibility inferred from the refined TLS model. Automated validation checks have been added to the PARVATI and TLSMD web servers and incorporated into the CCP4i user interface.
ISSN:1399-0047
0907-4449
1399-0047
DOI:10.1107/S0907444910020421