In vitro permeation of a pegylated naltrexone prodrug across microneedle-treated skin
Microneedles (MN) are a useful tool for increasing skin permeability to xenobiotics. Previous research showed marked improvement in the percutaneous flux of naltrexone (NTX) hydrochloride by the use of MN skin pretreatment alone; however, for better therapeutic effect, further enhancement is desired...
Gespeichert in:
Veröffentlicht in: | Journal of controlled release 2010-08, Vol.146 (1), p.37-44 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microneedles (MN) are a useful tool for increasing skin permeability to xenobiotics. Previous research showed marked improvement in the percutaneous flux of naltrexone (NTX) hydrochloride by the use of MN skin pretreatment alone; however, for better therapeutic effect, further enhancement is desired. The goal of this
in vitro study was to combine microneedle skin pretreatment with the use of a highly water-soluble PEGylated naltrexone prodrug (polyethyleneglycol-NTX, PEG-NTX) to investigate its transdermal transport at varying concentrations. Solubility and stability of the prodrug were investigated.
In vitro diffusion experiments employing MN-treated minipig skin were used to evaluate the performance of the PEGylated prodrug. The results revealed substantial deviation from ideal behavior, with the flux through MN-treated skin having a nonlinear relationship to the prodrug concentration in the donor solution. While in the lower concentration range tested the prodrug flux increase was proportional to the concentration increase, at high concentrations it showed no such dependence. Accounting for the decrease in the effective prodrug diffusivity accompanying the increase in viscosity, as predicted by the Stokes–Einstein equation, provided a rationale for the observed flux values. Increasing the viscosity of the donor solution is hypothesized to afford a curvilinear permeation profile for the PEGylated NTX prodrug.
The flux from a PEGylated naltrexone prodrug through microneedle-treated skin shows pronounced deviation from ideal behavior. Accounting for changes in the viscosity of the donor solution allows rationalization of the data.
[Display omitted] |
---|---|
ISSN: | 0168-3659 1873-4995 |
DOI: | 10.1016/j.jconrel.2010.05.034 |