Cell-based osteoprotegerin therapy for debris-induced aseptic prosthetic loosening on a murine model

Exogenous osteoprotegerin (OPG) gene modification appears a therapeutic strategy for osteolytic aseptic loosening. The feasibility and efficacy of a cell-based OPG gene delivery approach were investigated using a murine model of knee prosthesis failure. A titanium pin was implanted into mouse proxim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gene therapy 2010-10, Vol.17 (10), p.1262-1269
Hauptverfasser: Zhang, L, Jia, T-H, Chong, A C M, Bai, L, Yu, H, Gong, W, Wooley, P H, Yang, S-Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Exogenous osteoprotegerin (OPG) gene modification appears a therapeutic strategy for osteolytic aseptic loosening. The feasibility and efficacy of a cell-based OPG gene delivery approach were investigated using a murine model of knee prosthesis failure. A titanium pin was implanted into mouse proximal tibia to mimic a weight-bearing knee arthroplasty, followed by titanium particles challenge to induce periprosthetic osteolysis. Mouse fibroblast-like synoviocytes were transduced in vitro with either AAV-OPG or AAV-LacZ before transfused into the osteolytic prosthetic joint 3 weeks post surgery. Successful transgene expression at the local site was confirmed 4 weeks later after killing. Biomechanical pullout test indicated a significant restoration of implant stability after the cell-based OPG gene therapy. Histology revealed that inflammatory pseudo-membranes existed ubiquitously at bone–implant interface in control groups, whereas only observed sporadically in OPG gene-modified groups. Tartrate-resistant acid phosphatase+osteoclasts and tumor necrosis factor α, interleukin-1β, CD68+ expressing cells were significantly reduced in periprosthetic tissues of OPG gene-modified mice. No transgene dissemination or tumorigenesis was detected in remote organs and tissues. Data suggest that cell-based ex vivo OPG gene therapy was comparable in efficacy with in vivo local gene transfer technique to deliver functional therapeutic OPG activities, effectively halted the debris-induced osteolysis and regained the implant stability in this model.
ISSN:0969-7128
1476-5462
DOI:10.1038/gt.2010.64