Iron traffics in circulation bound to a siderocalin (Ngal)–catechol complex
The lipocalin protein Scn-Ngal is known to bind iron-chelating siderophores, leading to inhibition of bacterial growth. New results reveal that Scn-Ngal, in the absence of bacterial infection, can form a complex with catechol that binds and transports iron in vivo . The lipocalins are secreted prote...
Gespeichert in:
Veröffentlicht in: | Nature chemical biology 2010-08, Vol.6 (8), p.602-609 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The lipocalin protein Scn-Ngal is known to bind iron-chelating siderophores, leading to inhibition of bacterial growth. New results reveal that Scn-Ngal, in the absence of bacterial infection, can form a complex with catechol that binds and transports iron
in vivo
.
The lipocalins are secreted proteins that bind small organic molecules. Scn-Ngal (also known as neutrophil gelatinase associated lipocalin, siderocalin, lipocalin 2) sequesters bacterial iron chelators, called siderophores, and consequently blocks bacterial growth. However, Scn-Ngal is also prominently expressed in aseptic diseases, implying that it binds additional ligands and serves additional functions. Using chemical screens, crystallography and fluorescence methods, we report that Scn-Ngal binds iron together with a small metabolic product called catechol. The formation of the complex blocked the reactivity of iron and permitted its transport once introduced into circulation
in vivo
. Scn-Ngal then recycled its iron in endosomes by a pH-sensitive mechanism. As catechols derive from bacterial and mammalian metabolism of dietary compounds, the Scn-Ngal–catechol–Fe
(III)
complex represents an unforeseen microbial-host interaction, which mimics Scn-Ngal–siderophore interactions but instead traffics iron in aseptic tissues. These results identify an endogenous siderophore, which may link the disparate roles of Scn-Ngal in different diseases. |
---|---|
ISSN: | 1552-4450 1552-4469 |
DOI: | 10.1038/nchembio.402 |