MicroRNAs 1, 133, and 206: Critical factors of skeletal and cardiac muscle development, function, and disease
microRNAs (miRNAs) are a class of highly conserved small non-coding RNAs that negatively regulate gene expression post-transcriptionally. miRNAs are known to mediate myriad cell processes, including proliferation, differentiation, and apoptosis. With more than 600 miRNAs identified in humans, it is...
Gespeichert in:
Veröffentlicht in: | The international journal of biochemistry & cell biology 2010-08, Vol.42 (8), p.1252-1255 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | microRNAs (miRNAs) are a class of highly conserved small non-coding RNAs that negatively regulate gene expression post-transcriptionally. miRNAs are known to mediate myriad cell processes, including proliferation, differentiation, and apoptosis. With more than 600 miRNAs identified in humans, it is generally believed that many miRNAs function through simultaneously inhibiting multiple regulatory mRNA targets, suggesting that miRNAs participate in regulating the expression of many, if not all, genes. While many miRNAs are expressed ubiquitously, some are expressed in a tissue specific manner. The muscle specific miR-1, miR-133 and miR-206 are perhaps the most studied and best-characterized miRNAs to date. Many studies demonstrate that these miRNAs are necessary for proper skeletal and cardiac muscle development and function, and have a profound influence on multiple myopathies, such as hypertrophy, dystrophy, and conduction defects. |
---|---|
ISSN: | 1357-2725 1878-5875 |
DOI: | 10.1016/j.biocel.2009.03.002 |