Respiratory and Mayer wave-related discharge patterns of raphé and pontine neurons change with vagotomy

Previous models have attributed changes in respiratory modulation of pontine neurons after vagotomy to a loss of pulmonary stretch receptor "gating" of an efference copy of inspiratory drive. Recently, our group confirmed that pontine neurons change firing patterns and become more respirat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physiology (1985) 2010-07, Vol.109 (1), p.189-202
Hauptverfasser: MORRIS, K. F, NUDING, S. C, SEGERS, L. S, BAEKEY, D. M, SHANNON, R, LINDSEY, B. G, DICK, T. E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Previous models have attributed changes in respiratory modulation of pontine neurons after vagotomy to a loss of pulmonary stretch receptor "gating" of an efference copy of inspiratory drive. Recently, our group confirmed that pontine neurons change firing patterns and become more respiratory modulated after vagotomy, although average peak and mean firing rates of the sample did not increase (Dick et al., J Physiol 586: 4265-4282, 2008). Because raphé neurons are also elements of the brain stem respiratory network, we tested the hypotheses that after vagotomy raphé neurons have increased respiratory modulation and that alterations in their firing patterns are similar to those seen for pontine neurons during withheld lung inflation. Raphé and pontine neurons were recorded simultaneously before and after vagotomy in decerebrated cats. Before vagotomy, 14% of 95 raphé neurons had increased activity during single respiratory cycles prolonged by withholding lung inflation; 13% exhibited decreased activity. After vagotomy, the average index of respiratory modulation (eta(2)) increased (0.05 +/- 0.10 to 0.12 +/- 0.18 SD; Student's paired t-test, P < 0.01). Time series and frequency domain analyses identified pontine and raphé neuron firing rate modulations with a 0.1-Hz rhythm coherent with blood pressure Mayer waves. These "Mayer wave-related oscillations" (MWROs) were coupled with central respiratory drive and became synchronized with the central respiratory rhythm after vagotomy (7 of 10 animals). Cross-correlation analysis identified functional connectivity in 52 of 360 pairs of neurons with MWROs. Collectively, the results suggest that a distributed network participates in the generation of MWROs and in the coordination of respiratory and vasomotor rhythms.
ISSN:8750-7587
1522-1601
DOI:10.1152/japplphysiol.01324.2009