Streamlined syntheses of (−)-dictyostatin, 25,26-dihydro-16-desmethyldictyostatin, and 6-epi-25,26-dihydro-16-desmethyldictyostatin

The dictyostatins are a promising class of potential anticancer drugs because they are powerful microtubule stabilizing agents, but the complexity of their chemical structures is a severe impediment to their further development. Based on both synthetic and medicinal chemistry analyses, 25,26-dihydro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2010-07, Vol.132 (26), p.9175-9187
Hauptverfasser: Zhu, Wei, Jiménez, María, Jung, Won-Hyuk, Camarco, Daniel P., Balachandran, Raghavan, Vogt, Andreas, Day, Billy W., Curran, Dennis P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dictyostatins are a promising class of potential anticancer drugs because they are powerful microtubule stabilizing agents, but the complexity of their chemical structures is a severe impediment to their further development. Based on both synthetic and medicinal chemistry analyses, 25,26-dihydro-16-desmethyldictyostatin and its C6 epimer were chosen as potentially potent yet accessible dictyostatin analogs, and three new syntheses were developed. A relatively classical synthesis involving vinyllithium addition and macrocyclization gave way to a newer and more practical approach based on esterification and ring-closing metathesis reaction. Finally, aspects of these two approaches were combined to provide a third new synthesis based on esterification and Nozaki-Hiyama-Kishi reaction. This was used to prepare the target dihydro analogs and the natural product. All of the syntheses are streamlined because of their high convergence. The work provided several new analogs of dictyostatin including a truncated macrolactone and a C10 E -alkene, which were 400-fold and 50-fold less active than (−)-dictyostatin. In contrast, the targeted 25,26-dihydro-16-desmethyldictyostatin analogs retained almost complete activity in preliminary biological assays.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja103537u